

Air Conditioning Division

OPERATING AND MAINTENANCE MANUAL OF CENTRIFUGAL FANS TZAF FF – VTZ – NTHZ – THLZ FF – MAZ – MHZ – TLZ – TLI – TZAF – THLZ¹⁾ – HLZ¹⁾ – TLE – THLE – TEAF – NTHE – THE– KHLE AND PLENUM FANS NPL – NPL ALU – NPA – NPA ALU – TE – PEAF¹⁾ – NPE¹⁾

(This manual includes the fan and plenum fan arrangement according to standard EN 14986 to comply with "ATEX" Directive 2014/34/EU)

1) THLZ sizes over 450, HLZ, PEAF, NPE series currently not in production but available for spare parts in compliance with this manual.

FOREWORD

All Comefri fans and plenum fans are manufactured according to our Quality Assurance System, in compliance with BS EN ISO 9001; since 1987 our Quality System is certified by BSI (certificate n° FM 01403). Moreover all fans and plenum fans equipped with motor are tested accurately before leaving the factory.

Comefri fans and plenum fans are placed on the market in conformity with the requirements of "ErP" Directive 2009/125/EC and its relevant Regulation N° 327/2011 implementing the Directive in regard with the different product characteristics in terms of manufacturing and supplying;

they are of the state of the art design and comply with the requirements for health and safety of the Machinery Directive 2006/42/EC. See par.8 and 9.

Comefri defines:

Machine

All fans and plenum fans equipped with connected motor and drive, provided with all the protections necessary to meet the requirements of the Machinery Directive 2006/42/EC. **Partly Completed Machinery**

All other fans and plenum fans which are not included in the previous definition.

This Operating & Maintenance manual (which can be downloaded on www.comefri.com):

- describes the applications for the fans and plenum fans according to the national Standards, Regulations and Directives, which must be closely observed to avoid possible damage caused by incorrect installation or mishandling;

- contains notes for health and safety;

- warns of danger which can even occur with correct applications;

- must be read and observed by all personnel. These indications are not the only safety procedure: any operations made on moving and/or electrical parts, such as installation and maintenance, require special attention guaranteed only by skilled staff familiar with safety rules. Besides observance of these instructions, local laws must also be respected.

- must be accompanied by the relative technical catalogue of the individual product which

must be consulted for all specific information not included in this manual.

For additional accessories provided to the fan, the related information and instruction necessary for installation and functioning are available in the relevant manuals.

The warranty is valid for one year from the delivery date unless otherwise agreed prior to placing the order. The warranty is only applicable to manufacturing defects, which must be immediately reported to the manufacturer. A precondition of the warranty is the observance of the operating instructions. Damage which can be traced back to improper installation procedures, to the use of damaged fan or plenum fans or unauthorized alterations to it, such as repairs, are not covered by the Comefri warranty and Comefri is not liable for resulting damage and costs.

TECHNICAL DESCRIPTION

2.1 Fan description

2

The Comefri fan series TZAF FF, VTZ, NTHZ, THLZ FF, MAZ, MHZ, TLZ, TLI, TZAF, THLZ, HLZ, TLE, THLE, TEAF, NTHE, THE, KHLE ⁽ⁱ⁾ are centrifugal fans where the air flows axially into the wheel and is discharged radially in the volute. The performances allow medium and low air deliveries and medium and high pressures. See the technical documentation in the relative technical catalogue for the performance of the specific fan. The impellers of our centrifugal fans can be fitted with forward-curved blades, backward-curved blades or airfoil backward-curved blades.

The MAZ and MHZ series have more solid features than the TZAF FF and NTHZ series which makes them specific for heavy-duty air conditioning and industrial applications where reliability, solidity and easy maintenance play a vital role.

TEAF, NTHE, THE are single inlet fan series: the NTHE impellers are manufactured with welded backward curved blades, the TEAF impellers are manufactured with continuosly welded backward curved true airfoil shaped blades, the THE impellers are manufactured in glass reinforced polyamid, in steel on request.

(i) The KHLE series is a "kompakt" version of THLE series with the casing sideplates of rectangular shape, available in settings 4 or 5, with the same performances of THLE.

The features of each fan series are specified in the technical catalogue that must be consulted to identify the suitability of the fan for the fluid treated by the system.

Comefri centrifugal fans, with double or single inlet, can be completed with a wide range of accessories, according to application and installation requirements. The range of accessories is also completed by protection fittings, in conformity with UNI EN ISO 13857, available on demand. Comefri declines all liability for damage to persons or objects caused by absence of safety devices or by the use of devices not provided by Comefri.

Particular attention must be paid in case of direct contact with rotating parts. If this is the case, the use of specific and adequate personal protective measures (PPE) is essential.

2.2 Plenum Fan impeller description

The Comefri plenum fan series have centrifugal impeller where the air flows axially into the wheel and is discharged radially outward.

NPL, NPL ALU, TE, NPE plenum fan series have backward-curved blades while the NPA, NPA ALU, PEAF plenum fan series have airfoil backward-curved bladed impellers. The performances allow medium and low air deliveries and medium and high pressures. See the technical documentation in the relative technical catalogue for the performance of the specific plenum fan.

The features of each plenum fan series are specified in the technical catalogue that must be consulted to identify the suitability of the plenum fan for the fluid treated by the system.

The TE impeller is manufactured in glass reinforced polyamide.

The NPL ALU and NPA ALU impellers are manufactured in aluminium. The lower weight means less load on the bearings (longer bearing-life), lower extra-load added on the structures concerned by installation, also contributing to a reduction on self-induced vibrations. The aluminium alloy used has excellent resistance to corrosion and is non-toxic, non-magnetic and easy to clean.

Comefri impellers for plenum can be provided as a kit consisting of impeller and inletcone or according to the settings summarized in the Appendix.

Standard setting provided by Comefri is setting 4 which must be installed with horizontal shaft. Vertical installation is available in setting 5V.

Comefri impellers can be completed with a wide range of accessories, according to application and installation requirements. The range of accessories is also completed by protection fittings for the inlet-cone and for settings 4 and 5V in conformity with UNI EN ISO 13857, available on demand. Comefri declines all liability for any damage to persons or objects caused by absence of safety devices or by the use of devices not provided by Comefri. Particular attention must be paid in case of direct contact with rotating parts: plenum fans do not meet the provisions of the CE labelling (e.g. they have an impeller without guards). The plenum fan must nevertheless be installed in accordance with CE requirements.

Plenum fans in ATEX execution provided by factory with all safety devices meet the CE labelling.

Particular attention must be paid in case of direct contact with rotating parts. If this is the case, the use of specific and adequate personal protective measures (PPE) is essential.

2.3 <u>Technical data</u>

The technical data and the permissible limits are clearly listed on the fan and plenum fan label. They can be taken from the appropriate technical catalogue. It is absolutely forbidden to exceed the machine limits.

For some fans, a part of the catalogue curve is drawn as a dashed line to warn that the use of the fan in these conditions could generate instability and vibrations due to the presence of inlet obstructions (like pulley, etc). (For spark-proof execution, see par. 4.5). For particular executions not foreseen in the catalogue, please contact Comefri.

Noise has been measured according to ISO, DIN, UNI and ANSI-AMCA standards, by means of a frequency analyzer in real time.

See the appropriate technical catalogue for sound power levels, determined according to standards DIN 45635 Part38 / ISO 5136 for in-duct method and according to ANSI-AMCA 300 for reverberant room method. Values detected by the final user can be different from those detected during testing since they are affected by specific installation and environmental and structural factors near the fan or plenum fan and system.

2.4 Applications

The fans and plenum fans are intended to move dust-free air or slightly dusty air. They are not suitable for aggressive gases, vapours or dusty air. Improper use may cause damage to the bearings, corrosion, unbalancing of the impeller and vibrations.

The features of each product series are specified in the technical catalogue that must be consulted to identify the suitability of the fan or plenum fan for the fluid treated by the system.

Permissible operational temperature range for all fans in standard execution in setting 3 :

-20 ℃ to +60 ℃.

Permissible operational temperature range for impellers of plenum fans (except TE) : -20 $^{\circ}$ C to +85 $^{\circ}$ C; operational temperature range for TE impellers : -20 $^{\circ}$ C to +60 $^{\circ}$ C.

For temperatures outside of this range, kindly contact us in order to define the most appropriate execution.

The maximum ambient temperature of the standard motor is + 40 °C.

Consequently plenum fan wheels in all settings where motor is in the flow of the conveyed fluid, due to temperature limit of motor, operational temperature range is from -20 °C to +40 °C according to the motor model and brand.

2.5 <u>Fans and Plenum Fans with spark-proof execution</u> according to ATEX 2014/34/EU

The special TZAF FF Atex, VTZ Atex, NTHZ Atex, THLZ FF Atex, MAZ Atex, MHZ Atex, TLZ Atex, TLI Atex, TZAF Atex, THLZ Atex, HLZ Atex, TLE Atex, THLE Atex, TEAF Atex, NTHE Atex, THE (in steel) Atex, KHLE Atex, NPL Atex, NPA Atex, TE (in steel) Atex executions are available for spark-proof applications according to the ATEX Directive 2014/34/EU Group II Category 3G.

TZAF FF Atex, NTHZ Atex, MAZ Atex, MHZ Atex, NPL Atex and NPA Atex are Atex certified to be used in Group II Category 2G.

THLZ FF, THE and TE series with standard polyamide impellers cannot be in Atex execution; they can be in Atex execution ONLY with special steel impellers (see par. 2.5.3.1).

Plenum fan series NPL ALU and NPA ALU which are with aluminium wheel cannot be in Atex execution (see par. 2.5.3.1).

Plenum fans declared according Atex execution are made only as complete machinery provided with motor in arrangement 4 and 5V (not as loose components inlet-cone and wheel).

2.5.1 Applications

Fan and plenum fan operating in areas with combustible gases, vapors, mist, dust or with a possible danger of explosion must adhere to explosion-proof guidelines. From July 1, 2003 it is necessary for fans and plenum fans intended for use in potentially explosive atmospheres to comply with the ATEX Directive.

The ATEX Directive 2014/34/EU identifies two groups of fan and plenum fan equipment.

Group I: fan and plenum fan equipment intended for use in mining applications (Out of Comefri production).

Group II: intended for all other situations.

Fans and plenum fans in Group II are divided into three categories, depending on whether explosion-proof safety has to be assured only under normal operation (Category 3) or also when malfunctioning or faults occur (Categories 2 and 1).

Fans and plenum fans classification:

GROUP II *	Category 1	Equipment designed to be capable of functioning in conformity with the operational parameters established by the manufacturer and ensuring a very high level of protection. Equipment in this category is intended for use in areas in which explosive atmospheres caused by mixtures of air and gases, vapours or mists or by air/dusts mixtures are present continuously, for long periods or frequently.
GROUP II	Category 2	Equipment designed to be capable of functioning in conformity with the operational parameters established by the manufacturer and ensuring a high level of protection. Equipment in this category is intended for use in areas in which explosive atmospheres caused by mixtures of air and gases, vapours or mists or by air/dusts mixtures are likely to occur. The means of protection relating to equipment in this category shall ensure the required level of protection, even in the event of frequently occurring disturbances or equipment faults which normally have to be taken into account.
GROUP II	Category 3	Equipment designed to be capable of functioning in conformity with the operational parameters established by the manufacturer and ensuring a normal level of protection. Equipment in this category is intended for use in areas in which explosive atmospheres caused by mixtures of air and gases, vapours or mists or by air/dusts mixtures are unlikely to occur or, if they do occur, are likely to do so only infrequently and for a short period only.

* Group II, Category 1 (1G, 1D) – fans and plenum fans out of Comefri production.

This fan and plenum fan classification is due to the application of fans and plenum fans in areas of different explosion danger, where there is a different risk of flammable material being released to the atmosphere. The areas are classified in Zones: 0, 20, 1, 21, 2, 22.

Codes without prefix "2" refer to an atmosphere containing gas, vapor and mist. Codes with prefix "2" refer to air containing gas, vapor and also dust. Codes 0, 1 and 2 describe the likelihood of flammable material being released into the air in explosive concentrations. Zone 0 is the highest risk zone where an explosive atmosphere is expected to exist continuously or for very long periods of time. Zone 1 is an area where an explosive atmosphere is expected to exist only for short periods of time. Zone 2 is an area where an explosive concentration of flammable material is not expected and should it be released it will only exist for a very short period of time.

Pay attention that the presence of dust increases ignition risks and needs further means of protection (see the following). Please note that Comefri TZAF FF Atex, VTZ Atex, NTHZ Atex, THLZ FF Atex, MAZ Atex, MHZ Atex, TLZ Atex, TLI Atex, TZAF Atex, THLZ Atex, HLZ Atex, TLE Atex, THLE Atex, TEAF Atex, NTHE Atex, THE (in steel) Atex, KHLE Atex fans and NPL Atex, NPA Atex, TE (in steel) Atex plenum fans are intended to move dust-free air or slightly

Zone	Explosive Atmosphere	Dangerous concentration	Potential spark source must be avoided					
0 **	Gas, vapour, mist (G)	Constant or for a long time	Even where few shutdowns are expected					
20 **	Dust (D)	Constant or for a long time	Even where few shutdowns are expected					
1	Gas, vapour, mist (G)	Likely to occur	Where more frequent shutdowns are expected					
21 **	Dust (D)	Likely to occur	Where more frequent shutdowns are expected					
2	Gas, vapour, mist (G)	Rarely or for short time	In normal operation					
22 **	Dust (D)	Rarely or for short time	In normal operation					

** Out of TZAF FF Atex, VTZ Atex, NTHZ Atex, THLZ FF Atex, MAZ Atex, MHZ Atex, TLZ Atex, TLI Atex, TZAF Atex, THLZ Atex, HLZ Atex, TLE Atex, TLE Atex, TLE Atex, TEAF Atex, NTHE Atex, THE (in steel) Atex, KHLE Atex, NPL Atex, NPA Atex, TE (in steel) Atex range of application.

The fan and plenum fan shall be provided and marked according the Equipment Protection Level (EPL) required for the relevant group and category.

The Equipment Protection Level (EPL), as defined by IEC 60079-0 at par. 3.33, is the Level of Protection assigned to equipment based on its likelihood of becoming a source of ignition and distinguishing the differences between explosive gas atmospheres, explosive dust atmospheres, and the explosive atmospheres in mines susceptible to firedamp.

The EPL classes of interest for fans and plenum fans of Comefri production are:

Gc: equipment for explosive atmospheres containing gas, vapor and mist, having an "enhanced" Level of Protection, which is not a source of ignition in normal operation – corresponding to GROUP II, Category 3;

Gb: equipment for explosive atmospheres containing gas, vapor and mist, having a "high" Level of Protection, which is not a source of ignition in normal operation or during expected malfunctions – corresponding to GROUP II, Category 2.

As a consequence, the allowed use of the different category fans and plenum fans and relevant EPL, depending on the different zones is:

Fan Category	Designed for zone	Also applicable in zones	EPL
1G ***	0	1,2	Ga
1 D ***	20	21,22	Da
2 G ****	1	2	Gb
2 D *****	21	22	Db
3 G	2	-	Gc
3 D *****	22	-	Dc

*** Group II, Category 1 fans and plenum fans are out of Comefri production.

**** Group II, Category 2 requires a Certification consisting of a deposit of the technical documentation at a Notified Body. TZAF FF Atex, NTHZ Atex, MAZ Atex, MHZ Atex fan series and NPL Atex, NPA Atex plenum fan series are Atex certified to be used in Group II Category 2G.

***** The use of the fan and plenum fans in dusty environments is out of the range of application of TZAF FF Atex, VTZ Atex, NTHZ Atex, THLZ FF Atex, MAZ Atex, MHZ Atex, TLZ Atex, TLI Atex, TZAF Atex, THLZ Atex, HLZ Atex, TLE Atex, THLE Atex, TEAF Atex, NTHE Atex, THE (in steel) Atex, KHLE Atex, NPL Atex, NPA Atex, TE (in steel) Atex.

Comefri TZAF FF Atex, VTZ Atex, NTHZ Atex, THLZ FF Atex, MAZ Atex, MHZ Atex, TLZ Atex, TLI Atex, TZAF Atex, THLZ Atex, HLZ Atex, TLE Atex, THLE Atex, TEAF Atex, NTHE Atex, THE (in steel) Atex, KHLE Atex fans and NPL Atex, NPA Atex, TE (in steel) Atex plenum fans in spark-proof execution are suitable for:

atmospheres with a maximum 21 vol% oxygen content, absolute pressure from 0.8 bar to 1.1 bar and gas explosion Groups IIA and IIB.

Comefri fans and plenum fans are suitable also for hydrogen H2 under the following conditions: - only in esecution with impeller directly coupled to the motor shaft;

- NOT with the material pairing of stainless steel for both inlet-cone (stationary part) and impeller (rotating part) – see par. 2.5.3.1 "Materials for rotating and stationary parts". NOTE: applicability is only for hydrogen, not for the whole Group IIC.

Correspondence of the fan category to the inside/outside hazardous zone.

The explosion risk occurs either due to the explosive gas moved by the fan or due to the presence of explosive gas in the areas where the fan is placed. The risk analysis must therefore consider both outside and inside the fan.

TZAF FF Atex, VTZ Atex, NTHZ Atex, THLZ FF Atex, MAZ Atex, MHZ Atex, TLZ Atex, TLI Atex, TZAF Atex, THLZ Atex, HLZ Atex, TLE Atex, THLE Atex, TEAF Atex, NTHE Atex, THE (in steel) Atex, KHLE Atex fans can be installed (according to ISO 5801 or EN ISO 13349) in mode A (without inlet and outlet duct) or mode B (without inlet duct and with outlet duct). Therefore they have the same explosive atmosphere and require the same equipment category inside and outside.

TLE Atex, THLE Atex, TEAF Atex, NTHE Atex, THE (in steel) Atex and KHLE Atex fans must have the same requirements as above when installed in mode A and B. Installation in mode C (with inlet duct and without outlet duct) has the same requirements as needed for modes A and B.

TLE Atex, THLE Atex, TEAF Atex, NTHE Atex, THE (in steel) Atex and KHLE Atex fans can also be installed in mode D (with inlet and outlet ducts) and in this case the fan may have a different category for the inside and outside. Fans which may be used both to convey an explosive gas, vapour, mist atmosphere and/or are located in an explosive gas, vapour or mist atmosphere are assigned categories internally and externally depending on the likelihood of them acting as an effective ignition source.

Category 3 fans shall not create an effective ignition source in normal operation. Category 2 fans shall meet Category 3 fans requirements, and in addition not create an effective ignition source with expected malfunctions.

Fans, especially their shaft seals and flexible connections at the inlet and outlet, may not be absolutely gas tight, and connected ducts may not be leak proof. The hazardous atmosphere may leak either from the inside of the fan into the adjacent environment, or from a hazardous environment around a fan, and into the fan casing through a leakage path e.g. a shaft seal when this is below atmospheric pressure. Therefore the manufacturer shall consider these aspects in the ignition hazard assessment. The manufacturer shall give information about the possible leakage rates of the fan in the information for use.

Being the leakage rates not known Comefri shall construct the fan so that there is no more than one category difference between the inside and the outside.

And as said above, where the fan has an open inlet and/or outlet (installation modes A, B, C according to EN ISO 13349) the inside and the outside of the fan shall have the same category.

2.5.2 Temperature

The user must choose the appropriate temperature class consistent with the minimum ignition temperature of the gas, mist or dust (see table below). The temperature class indicates the maximum surface temperature reached by the fan and plenum fan during operation in which the temperature of the inlet fluid is inside the permissible Atex temperature range (standard permissible Atex temperature range is from -20 to +60 °C).

Generally the maximum temperature rise will occur at minimum flow and maximum density. If the system designer is unable to guarantee the safe minimum or maximum air flow, for Category 2 fans, temperature monitoring devices have to be installed, which in case of a dangerous temperature rise will automatically activate emergency functions, e.g. fan shut down or bypassing, e.g. with dampers.

In case of presence of lightly dusty air, the ignition risk assessment shall consider the temperature raising of dust or other material trapped between two moving parts or a moving part and a fixed part, especially if material remains in contact with the same moving part for a long period.

NOTE: the maximum temperature indicated on the fan and plenum fans label refers to operating conditions without dust.

The user must evaluate the relation between the maximum surface temperature and the minimum ignition temperature of the dust according to operating conditions.

For dust problems, also see standard EN 1127-1 which has indications concerning protective measures to be taken.

Temperature class	Maximum surface temperature [℃]
T1 *****	450
T2	300
Т3	200
T4	135
Τ5	100
T6	85

****** Generally for mining applications.

The temperature class is indicated in the fan and plenum fans label (see par. 2.5.5).

The temperature class for double inlet fan series in Group II Category 3G (TZAF FF Atex, VTZ Atex, NTHZ Atex, THLZ FF Atex, MAZ Atex, MHZ Atex, TLZ Atex, TLI Atex, TZAF Atex, THLZ Atex, HLZ Atex) is T4.

For double inlet fan series in Group II Category 2G see par. 2.5.3.3.

The temperature class for single inlet fan series (TLE Atex, THLE Atex, TEAF Atex, NTHE Atex, THE (in steel) Atex) and plenum fan series in setting 11 (NPL Atex arr.11, NPA Atex arr.11) is T3.

The difference between double and inlet fans is mainly due to the bearing, which is the most critical element concerning heating.

NOTE for settings 4 and 5. For single inlet fan series TLE Atex, THLE Atex, TEAF Atex, NTHE Atex, THE (in steel) Atex, KHLE Atex executed in settings 4 and 5 and for plenum fan series NPL Atex, NPA Atex, TE (in steel) Atex executed in settings 4 and 5 the temperature class corresponds to the temperature class of the installed motor.

NOTE: for plenum fans in settings with impeller installed on the motor shaft, as a rule the temperature class is set equal to the motor temperature class and is quoted also on the plenum fan label.

2.5.3 Spark protection measures and mechanical design criteria

2.5.3.1 CRITERIA FOR BOTH CATEGORY 2 AND 3 - Gas

-- General

Comefri fans and plenum fans (casings, supporting structures, guards, protective enclosure and other external parts) are of a rigid design. Deformation resulting from a single impact at the most vulnerable point is so small that the moving parts do not come into contact with the casing or the protective enclosure. For this reason the impact test is considered unnecessary.

Possible causes of reducing the clearances between the casing and the moving parts include distortion of the casing caused by connection to ductwork. Both in presence or absence of flexible connections, it is up to user's responsibility to design connecting ductwork in order to avoid in any case, that forces and torques are charged on the fan casing or on the plenum fan structure.

-- Casing

The casing is continuously welded only on customer's request.

For MAZ Atex and MHZ Atex fans, the casing is continuously welded as per standard.

The fan is equipped with an inspection door. It is held in position by bolts and sealed. The fan is equipped with the drain plug to facilitate the drain of condensation and cleaning operation.

-- Impellers

Comefri TZAF FF Atex, VTZ Atex, NTHZ Atex, THLZ FF Atex, MAZ Atex, MHZ Atex, TLZ Atex, TLI Atex, TZAF Atex, THLZ Atex, HLZ Atex, TLE Atex, THLE Atex, TEAF Atex, NTHE Atex, THE (in steel) Atex, KHLE Atex, NPL Atex, NPA Atex, TE (in steel) Atex impellers are of a rigid design.

For Atex execution, the impeller of THLZ and THLZ FF from 180 to 450, of THE series and of TE series must be manufactured in steel, NOT in glass reinforced polyamide as in the standard

execution.

NPL ALU e NPA ALU cannot be used in Atex applications.

The impeller shaft fixed to bearings must be installed in a horizontal position. When impeller is directly coupled to motor shaft, as for plenum fan in setting 5V, it is possible the vertical istallation by the use of a proper motor.

-- Materials for rotating and stationary parts

In view of misuse, due to rare or even very rare malfunctioning, potential areas of contact between the rotating elements and fixed components have been manufactured from materials in which the risk of ignition through friction and friction-impact sparks is minimized as EN 14986 par. 4.7.2.

The material pairings chosen for Comefri fans and plenum fans for the stationary rubbing part and the rotating rubbing part are as in the table below. The material of the rotating part assures the mechanical stress performance.

Stationary part	Moving part	NOTES
Copper	Steel, stainless steel or	- This material combination is accomplished making the whole component from that material or using linings of that material.
	cast-iron	- Even if these alloys are non-sparking, they can easily form hot spots due to friction and low heat conductivity.
		- In presence of hydrogen steps shall be taken to ensure that no flying rust particles or flakes can be deposited on surfaces that may come into contact with each other.
Stainless steel	Stainless steel	- Comefri executes this material pairing ONLY in Category 3G and ONLY for gas explosion Groups IIA and IIB, NOT for hydrogen.
		- <u>These pairings can cause ignition of explosive atmospheres</u> when rubbing occurs.
		- Even if this alloy generates no sparks it can in case of friction easily generate hot surfaces because of the low thermal conductivity.

Linings have a minimum thickness as given in the table below:

Motor power [kW]	Thickness of copper tips [mm]					
=< 11	2					
> 11 to 90	3					
> 90 to 250	4					
> 250	5					

The linings are securely attached to the base material by welding.

NOTE The use of linings may only give protection for a limited time.

Potential areas of contact between the rotating elements and fixed components and relative provisions adopted to satisfy requirement of EN 14986 par. 4.7.2:

INLET-CONE and SHROUD Inlet-cones are provided in the proximity of the wheel with an extension made of copper or are completely made of copper

In the stainless steel – stainless steel pairing inlet-cone is completely manufactured in stainless steel.

FOREFINGER® and SHROUD Forefinger® is manufactured in copper for Atex applications

SINGLE INLET WHEEL BACKPLATE / HUB / SHAFT and CASING SIDEPLATE There is a risk of contact between wheel backplate, hub or shaft and the casing sideplate and therefore a copper plate is installed internally of the sideplate.

SEAL / SEAL HOUSING – SHAFT. The seal retaining plate of the seal housing, which is close to the shaft, is made in copper. The retaining plate is fixed with brass screws. Seal material is ATEX certified by supplier.

TRANSMISSION GUARD There is a risk of contact between guard and pulleys and motor / fan shafts and therefore a copper plate is installed in the internal side of the guard in front of the pulleys.

These protections are fixed with brass screws.

PROTECTIVE ENCLOSURE FOR PLENUM FANS For plenum fans it is necessary a protective enclosure around the wheel (see par. 2.5.3.2 "Protection against foreign particles"). A potential explosion risk can come from an accidental contact between rotating parts as wheel back-plate and/or wheel hub (depending on which one is the most protuberant to enclosure) and the closest stationary parts as the enclosure wall or the motor-support. To satisfy Atex requirements a copper plate is fixed on the guard in front of the wheel / hub or for small sizes the guard wall in front of the wheel is completely manufactured in copper. If the wheel diameter is close to the outward "L" frame supporting the enclosure a copper plate is fixed on the frame. All screws used for fixing these copper anti-spark protections are of brass.

Paints do not contain aluminium and do not contain iron oxides, which can cause aluminothermic sparks.

NOTE: cooling wheel is a rotating part that shall satisfy Atex requirement of EN 14986 par. 4.7.2. Because in Atex application max temperature of input air is +60 °C, cooling wheel is not necessary and therefore it must not be used.

-- Vibrations

The impeller or the complete rotating assembly is balanced according to ISO 21940-11 and VDI

2060 grade 2.5.

In case of belt transmission the pulleys are also balanced.

The completed fan and plenum fan meet the vibration levels recommended in ISO 14694 and ISO 10816-3.

-- Air performances

The technical solutions adopted to comply with Atex requirements imply a reduction in the fan performances, reduction that in accordance with standards ISO 13348 - DIN 24166 can be defined as a one-step increase of the tolerance class originally defined for the standard construction, for example from tolerance Class 2 to tolerance Class 3. For more technical details and selections please contact Comefri sales office.

2.5.3.2 FURTHER CRITERIA FOR CATEGORY 3 - Gas

-- Deposits inside the fan

TZAF FF Atex, VTZ Atex, NTHZ Atex, THLZ FF Atex, MAZ Atex, MHZ Atex, TLZ Atex, TLI Atex, TZAF Atex, THLZ Atex, HLZ Atex, TLE Atex, THLE Atex, TEAF Atex, NTHE Atex, THE (in steel) Atex, KHLE Atex fan series and NPL Atex, NPA Atex, TE (in steel) Atex plenum fan series treated in this manual are intended to move dust-free air or slightly dusty air, as already mentioned. Many types of dust, mist and droplets may be in suspension in the air flow. Even small quantities of impurities may in time form layers of combustible or non-combustible material within the fan and adhere to rotating parts. Even normal ambient air may contain sufficient airborne particles to form layers, which may increase the risk of ignition. For spark-proof execution, TZAF FF Atex, VTZ Atex, NTHZ Atex, THLZ FF Atex, MAZ Atex, MHZ Atex, TLZ Atex, TLI Atex, TLA Atex, TLZ Atex, THL Atex, TEAF Atex, NTHE Atex, THE (in steel) Atex, KHLE Atex fans are provided with an inspection door and drain plug, so that inspection and cleaning operations can be easily carried out.

-- Clearance between rotating parts and the stationary parts

The clearance between rotating elements and the fan casing / stationary parts is the most important safety feature of ignition minimizing fans. The minimum clearances between rotating components such as the impeller and fixed components e.g. the fan casing are at least 0,5 % of the diameter of the rotating part at the point where it can contact the stationary part of the finished component, but are not less than 2 mm in the axial or radial directions nor need to be more than 13 mm.

The same provision shall apply also to the clearance around shaft.

Comefri provisions satisfy this requirement for all potential areas of contact listed in the previous par. 2.5.3.1 at "Materials for rotating and stationary parts".

Minimum clearance between inlet-cone and shroud is indicated in the Appendix for each Comefri fan and plenum fan series.

NOTE: the clearance may change with rotation, temperature, and due to vibrations and belt drive tension. For this reason the installer / user must assure the correct belt tension (see par. 6.5) and check the final clearance after tensioning (see par. 4.5).

Copper plates in front of rotating parts (pulleys, hubs, back-plate, etc.) have an outer dimension at least from 5 to 10 mm greater than rotating part dimension.

Clearance between the motor or fan shaft and the edge of the passage hole is designed as indicated here above.

-- Bearings

Bearings are designed for an L₁₀ life of at least 20000 hours in accordance with ISO 281. This requirement is guaranteed only if the diameter of the pulley respects a minimal value according to our fan-selection program *Aeolus* (see par. 4.3)

-- Power transmission systems

V-belts must be electrostatically conductive.

They must be declared by manufacturer to be compliant with Atex requirements. The belt speed shall not exceed 30 m/s.

-- Couplings

Couplings are arranged so that the rotating part that is exposed to the potentially explosive atmosphere does not exceed the maximum surface temperature of the fan. Couplings shall be in compliance with Atex Directive.

-- Impeller - shaft attachment

For motor powers in excess of 15 kW a positive locking is achieved for the fixing of hub on the shaft with the use of the key and relative safe grub screw and arranging a couple of seeger rings on the shaft between the hub for single and double inlet fans; the use of the seeger rings at the fan shaft restricts the maximal rotational speed: the maximal permissible rotational speed is indicated in the label.

For single inlet wheels directly coupled to the motor, as for plenum fans in setting 4 and 5V, positive locking is performed fixing the impeller hub on the motor shaft with the use of key and relative safe grub screw and locking it to the motor shaft shoulder with a locking screw and washer at the tapped shaft end. Eventually a washer is set between the shoulder and the hub (ex. in case of hub in aluminum).

As an alternative to the seeger rings, the impeller can be locked with the use of a couple of stop bushings without degrading the maximum speed.

NOTE: special execution with a taper-bushed connection of the impeller to the shaft is used for fans with motor power not exceeding 15 kW.

-- Corrosion

Corrosion of fan and plenum fan components can in several ways lead to an ignition risk. The materials used for Comefri fans and plenum fans are therefore corrosion protected by paint or zinc-coating or manufactured in stainless steel.

The possibility of the fan and plenum fan being exposed to other corrosive chemical constituents of the gas shall be identified by the customer and communicated to Comefri in order to get approval or indications for special settings to be carried out.

-- Fire resistance

The materials used for the impeller, fan casing of Comefri TZAF FF Atex, VTZ Atex, NTHZ Atex, THLZ FF Atex, MAZ Atex, MHZ Atex, TLZ Atex, TLI Atex, TZAF Atex, THLZ Atex, HLZ Atex, TLE Atex, THLE Atex, TEAF Atex, NTHE Atex, THE (in steel) Atex, KHLE Atex fan series and for the impeller, structure of Comefri NPL Atex, NPA Atex, TE (in steel) Atex plenum fan series withstand short-term exposure to flames. (The requirement is met if the components are only partly destroyed without burning through and without the onset of a self-sustaining combustion when exposed to a (propane) Bunsen burner flame approximately 150 mm long for 30 seconds without additional air supply).

-- Protection against foreign particles

As required by Standard EN 14986, the fan and plenum fan shall be protected against the entry of foreign particles that could create an ignition hazard.

In compliance with this standard requirement, Comefri supplies fans and plenum fans with the following provisions.

Fans:

Comefri fans are provided with proper inlet and outlet protective guards according to grade IP20 (IEC 60529).

Plenum fans:

Comefri standard Atex execution provides plenum fans in setting 4 and 5V equipped with the proper protection guard at the inlet and the protective enclosure at the outlet according to grade IP20 (IEC 60529). The guard of the protection enclosure in setting 4 is fixed at the front panel of the structure and at an auxiliary frame provided between motor and wheel. In setting 5V a guard is fixed at the frames connecting inlet plate and motor plate. (see sketch in the appendix)

These guards and protective enclosures shall not be tampered, nor substituted with others of different type, causing the decay of the Comefri certification for Atex execution.

As exception, fan or plenum fan can be supplied without protections provided both the following conditions are respected:

the customer has produced a written declaration where he states that upon analysis the kind of installation has proved to be itself a guarantee of protection against foreign particles that could create an ignition hazard and

- the customer requires by writing in the commercial order not to supply the protections.

As warned in the Standard EN 14986, the presence of inlet duct is not itself a guarantee against foreign particles that could create an ignition hazard, but the risk of entry of foreign particles is to be analyzed anyway.

-- Shaft seals

Sealing elements may be of contact or non-contact type.

For contact type, i.e. the sealing element contacts permanently the rotating shaft, sealing material and design are ATEX certified by the supplier.

Non-contact seals and seal housings comply with requirements of the above paragraphs "Materials for rotating and stationary parts" and "Clearance between rotating parts and the stationary parts".

2.5.3.3 FURTHER CRITERIA FOR CATEGORY 2 - Gas

The TZAF FF Atex, NTHZ Atex, MAZ Atex, MHZ Atex fan and NPL Atex, NPA Atex plenum fan series are the only ones among the fan series in the present manual that are certified to be used also in Atex Group II Category 2G. All characteristics explained for Category 3 are valid also for Category 2 with the further additional and/or predominant Atex Category 2 requirements detailed here following.

TZAF FF Atex, NTHZ Atex

-- Bearings

The L_{10} minimum life shall not be less than 40000 hours. This requirement is guaranteed only if the diameter of the pulley respects a minimal value according to our fan-selection program *Aeolus* (see par. 4.3)

-- Impeller - shaft attachment

Fan series TZAF FF Atex and NTHZ Atex

For motor powers in excess of 5.5 kW a positive locking is achieved for the fixing of hub on the shaft with the use of the key and relative safe grub screw and arranging a couple of seeger rings or stop bushings on the shaft between the hub. The use of the seeger rings on the fan shaft restricts the maximal permissible rotational speed of the standard catalogue limits to the rotational speed limits reported in the following tables.

For motor powers less than 5.5 kW the fixing of the hub on the shaft can be achieved also with the use of the key and relative safe grub screw

Rotational speed limit is indicated in the fan label.

•		Max RPM			Max	RPM		Max	RPM		Max RPM	
Fan Model	Arr.	Stop	Seeger									
		bushing	ring									
TZAF 315 FF	R	3350	2730	T1	4000	3000	-	-	-	T2	4000	3700
TZAF 355 FF	R	3000	3000	T1	3650	3200	-	-	-	T2	4000	3770
TZAF 400 FF	R	2700	2700	T1	3200	2750	T2L	3215	3000	T2	3700	3200
TZAF 450 FF	R	2400	2400	T1	2850	2650	T2L	2950	2750	T2	3300	2900
TZAF 500 FF	R	2100	1850	T1	2300	1960	T2L	2500	2210	T2	2820	2400
TZAF 560 FF	R	1950	1820	T1	2200	1870	T2L	2650	2350	T2	2700	2350
TZAF 630 FF	R	1550	1400	T1	1700	1450	T2L	2250	1920	T2	2350	2000
TZAF 710 FF	R	1370	1350	T1	1700	1450	T2L	1850	1800	T2	2100	1850
TZAF 800 FF	-	-	-	T1	1300	1120	T2L	1650	1470	T2	1800	1550
TZAF 900 FF	-	-	-	T1	1300	1200	T2L	1450	1300	T2	1600	1450
TZAF 1000 FF	-	-	-	T1	1050	900	T2L	1250	1120	T2	1400	1270
TZAF 1120 FF	-	-	-	T1	850	770	-	-	-	T2	1200	1150
TZAF 1250 FF	-	-	-	T1	800	700	-	-	-	T2	1100	1070

AISI 304 and AISI 304 L EXECUTION

Max RPM limits are the same for execution with stop bushing and with seeger ring

Fan model	arr.	Max RPM						
TZAF 315 FF	R	2730	T1	3000	-	-	T2	3400
TZAF 355 FF	R	2550	T1	3100	-	-	T2	3400
TZAF 400 FF	R	2295	T1	2720	T2L	2735	T2	3145
TZAF 450 FF	R	2040	T1	2425	T2L	2510	T2	2805
TZAF 500 FF	R	1785	T1	1955	T2L	2125	T2	2400
TZAF 560 FF	R	1660	T1	1870	T2L	2255	T2	2295
TZAF 630 FF	R	1320	T1	1445	T2L	1915	T2	2000
TZAF 710 FF	R	1165	T1	1445	T2L	1575	T2	1785
TZAF 800 FF	-	-	T1	1105	T2L	1405	T2	1530
TZAF 900 FF	-	-	T1	1105	T2L	1235	T2	1360
TZAF 1000 FF	-	-	T1	895	T2L	1065	T2	1190
TZAF 1120 FF	-	-	T1	720	-	-	T2	1020
TZAF 1250 FF	-	-	T1	680	-	-	T2	935

AISI 316 and AISI 316 L EXECUTION

Max RPM limits are the same for execution with stop bushing and with seeger ring

Fan model	arr.	Max RPM						
TZAF 315 FF	R	2510	T1	3000	-	-	T2	3000
TZAF 355 FF	R	2250	T1	2740	-	-	T2	3000
TZAF 400 FF	R	2025	T1	2400	T2L	2410	T2	2275
TZAF 450 FF	R	1800	T1	2140	T2L	2215	T2	2475
TZAF 500 FF	R	1575	T1	1725	T2L	1875	T2	2115
TZAF 560 FF	R	1465	T1	1650	T2L	1990	T2	2025
TZAF 630 FF	R	1165	T1	1275	T2L	1690	T2	1765
TZAF 710 FF	R	1030	T1	1275	T2L	1390	T2	1575
TZAF 800 FF	-	-	T1	975	T2L	1240	T2	1350
TZAF 900 FF	-	-	T1	975	T2L	1090	T2	1200
TZAF 1000 FF	-	-	T1	790	T2L	940	T2	1050
TZAF 1120 FF	-	-	T1	640	-	-	T2	900
TZAF 1250 FF	-	-	T1	600	-	-	T2	825

Duplex EXECUTION

			Max RPM		Max RPM			Max	RPM		Max RPM	
Fan Model	Arr.	Stop	Seeger	Arr.	Stop	Seeger	Arr.	Stop	Seeger	Arr.	Stop	Seeger
		bushing	ring		bushing	ring		bushing	ring		bushing	ring
TZAF 315 FF	R	3350	2730	T1	4000	3000	-	-	-	T2	4000	3700
TZAF 355 FF	R	3000	3000	T1	3650	3200	-	-	-	T2	4000	3770
TZAF 400 FF	R	2700	2700	T1	3200	2750	T2L	3215	3000	T2	3700	3200
TZAF 450 FF	R	2400	2400	T1	2850	2650	T2L	2950	2750	T2	3300	2900
TZAF 500 FF	R	2100	1850	T1	2300	1960	T2L	2500	2210	T2	2820	2400
TZAF 560 FF	R	1950	1820	T1	2200	1870	T2L	2650	2350	T2	2700	2350
TZAF 630 FF	R	1550	1400	T1	1700	1450	T2L	2250	1920	T2	2350	2000
TZAF 710 FF	R	1370	1350	T1	1700	1450	T2L	1850	1800	T2	2100	1850
TZAF 800 FF	-	-	-	T1	1300	1120	T2L	1650	1470	T2	1800	1550
TZAF 900 FF	-	-	-	T1	1300	1200	T2L	1450	1300	T2	1600	1450
TZAF 1000 FF	-	-	-	T1	1050	900	T2L	1250	1120	T2	1400	1270
TZAF 1120 FF	-	-	-	T1	850	770	-	-	-	T2	1200	1150
TZAF 1250 FF	-	-	-	T1	800	700	-	-	-	T2	1100	1070

		Max	RPM									
Fan Model	Arr.	Stop	Seeger									
		bushing	ring									
NTHZ 315	R	3550	3150	T1	3700	3150	-	-	-	T2	3900	3650
NTHZ 355	R	3150	3150	T1	3400	3200	-	-	-	T2	3850	3600
NTHZ 400	R	2800	2380	T1	2950	2400	T2L	3200	2700	T2	3600	2900
NTHZ 450	R	2400	2380	T1	2650	2400	T2L	2950	2700	T2	3230	2750
NTHZ 500	R	2100	1850	T1	2200	1870	T2L	2500	2215	T2	2720	2275
NTHZ 560	R	1950	1790	T1	2050	1800	T2L	2400	2200	T2	2600	2200
NTHZ 630	R	1550	1370	T1	1650	1400	T2L	2100	1800	T2	2275	1850
NTHZ 710	R	1350	1350	T1	1500	1350	T2L	1850	1750	T2	2015	1820
NTHZ 800	-	-	-	T1	1200	1050	T2L	1500	1325	T2	1700	1425
NTHZ 900	-	-	-	T1	1200	1050	T2L	1350	1250	T2	1500	1350
NTHZ 1000	-	-	-	T1	1050	850	T2L	1150	1050	T2	1260	1150
NTHZ 1120	-	-	-	T1	825	750	-	-	-	T2	1175	1100
NTHZ 1250	-	-	-	T1	765	650	-	-	-	T2	1050	1000

AISI 304 and AISI 304 L EXECUTION

Max RPM limits are the same for execution with stop bushing and with seeger ring

Fan model	arr.	Max RPM						
NTHZ 315	R	3020	T1	3145	-	-	T2	3315
NTHZ 355	R	2680	T1	2890	-	-	T2	3275
NTHZ 400	R	2380	T1	2400	T2L	2700	T2	2900
NTHZ 450	R	2040	T1	2255	T2L	2510	T2	2750
NTHZ 500	R	1785	T1	1870	T2L	2125	T2	2275
NTHZ 560	R	1660	T1	1745	T2L	2040	T2	2200
NTHZ 630	R	1320	T1	1400	T2L	1785	T2	1850
NTHZ 710	R	1150	T1	1275	T2L	1575	T2	1715
NTHZ 800	-	-	T1	1020	T2L	1275	T2	1425
NTHZ 900	-	-	T1	1020	T2L	1150	T2	1275
NTHZ 1000	-	-	T1	850	T2L	980	T2	1070
NTHZ 1120	-	-	T1	700	-	-	T2	1000
NTHZ 1250	-	-	T1	650	-	-	T2	895

AISI 316 and AISI 316 L EXECUTION

Max RPM limits are the same for execution with stop bushing and with seeger ring

Fan model	arr.	Max RPM						
NTHZ 315	R	2665	T1	2775	-	-	T2	2925
NTHZ 355	R	2365	T1	2550	-	-	T2	2890
NTHZ 400	R	2100	T1	2215	T2L	2400	T2	2700
NTHZ 450	R	1800	T1	1990	T2L	2215	T2	2425
NTHZ 500	R	1575	T1	1650	T2L	1875	T2	2040
NTHZ 560	R	1465	T1	1540	T2L	1800	T2	1950
NTHZ 630	R	1165	T1	1240	T2L	1575	T2	1705
NTHZ 710	R	1015	T1	1125	T2L	1390	T2	1510
NTHZ 800	-	-	T1	900	T2L	1125	T2	1275
NTHZ 900	-	-	T1	900	T2L	1015	T2	1125
NTHZ 1000	-	-	T1	790	T2L	865	T2	945
NTHZ 1120	-	-	T1	620	-	-	T2	880
NTHZ 1250	-	-	T1	575	-	-	T2	790

Duplex EXECUTION

		Max	RPM		Max	RPM	[Max	RPM		Max	RPM
Fan Model	Arr.	Stop bushing	Seeger ring									
NTHZ 315	R	3550	3150	T1	3700	3150	-	-	-	T2	3900	3650
NTHZ 355	R	3150	3150	T1	3400	3200	-	-	-	T2	3850	3600
NTHZ 400	R	2800	2380	T1	2950	2400	T2L	3200	2700	T2	3600	2900
NTHZ 450	R	2400	2380	T1	2650	2400	T2L	2950	2700	T2	3230	2750
NTHZ 500	R	2100	1850	T1	2200	1870	T2L	2500	2215	T2	2720	2275
NTHZ 560	R	1950	1790	T1	2050	1800	T2L	2400	2200	T2	2600	2200
NTHZ 630	R	1550	1370	T1	1650	1400	T2L	2100	1800	T2	2275	1850
NTHZ 710	R	1350	1350	T1	1500	1350	T2L	1850	1750	T2	2015	1820
NTHZ 800	-	-	-	T1	1200	1050	T2L	1500	1325	T2	1700	1425
NTHZ 900	-	-	-	T1	1200	1050	T2L	1350	1250	T2	1500	1350
NTHZ 1000	-	-	-	T1	1050	850	T2L	1150	1050	T2	1260	1150
NTHZ 1120	-	-	-	T1	825	750	-	-	-	T2	1175	1100
NTHZ 1250	-	-	-	T1	765	650	-	-	-	T2	1050	1000

-- Casing

According to TZAF FF Atex and NTHZ Atex Technical Documentation deposited by the Notified Body, casing of TZAF FF Atex and NTHZ Atex fans are manufactured in galvanized steel up to size 1000 (it can be continuosly welded on customer's request) and in black and painted steel over size 1000. For all sizes casing can be manufactured also in AISI 304, in AISI 304L, in AISI 316, in AISI 316L or in Duplex SS2205.

Casing is provided with inspection door. It is held in position by bolts and sealed.

The standard EN 14986 requires that the inspection door, outlet and inlet joints and the eventual holes in the casing for the fixing screws shall be sealed. As a consequence the casing can be considered as gas tight without release (or with reduced release); this could be an aim in the single inlet fan series, but it is out of application in the double inlet fan series, as for the TZAF FF Atex, NTHZ Atex object of the Category 2G certification.

The fan shaft must be installed in a horizontal position.

-- Application limits here following listed are as declared in the Technical Documentation deposited by the Notified Body and must be strictly observed.

Fans shall operate inside the field covered by the catalogue curves, the use of the fan outside this field could generate instability and vibrations;

fans can neither be used in the part of catalogue curves identified as "Area 1" because of the same risk of instability and vibrations:

therefore in Atex application the fan must absolutely NOT be used outside catalogue field and in the zone identified by "Area 1".

TZAF FF Atex and NTHZ Atex:

absolute pressure from 0.8 bar to 1.1 bar; aerodynamic energy increase of less than 25 kJ/kg; atmospheres with a maximum 21 vol% oxygen content;

maximal temperature range of conveyed fluid between -20 and +60 $^{\circ}$ C (except. from more stringent limits according to the motor model and brand installed); gas explosion Groups IIA and IIB; temperature class T3.

As already declared for all fans of this handbook: no for conveying fluids containing dust.

MAZ Atex, MHZ Atex

-- Bearings

The L_{10} minimum life shall not be less than 40000 hours. This requirement is guaranteed only if the diameter of the pulley respects a minimal value according to our fan-selection program *Aeolus* (see par. 4.3)

-- Impeller - shaft attachment

Fan series MAZ Atex and MHZ Atex.

For motor powers in excess of 5.5 kW a positive locking is achieved for the fixing of hub on the shaft with the use of the key and relative safe grub screw and arranging a couple of seeger rings or stop bushings on the shaft between the hub. The use of the seeger rings on the fan shaft restricts the maximal permissible rotational speed of the standard catalogue limits to the rotational speed limits reported in the following tables.

For motor powers less than 5.5 kW the fixing of the hub on the shaft can be achieved also with the use of the key and relative safe grub screw.

Rotational speed limit is indicated in the fan label.

•		Max	RPM		Max	RPM		Max	RPM
Fan Model	arr	Stop	Seeger	arr	Stop	Seeger	arr	Stop	Seeger
		bushing	ring		bushing	ring		bushing	ring
MAZ 315	T1	4000	3000	-	-	-	T2	4000	3700
MAZ 355	T1	3650	3200	-	-	-	T2	4000	3770
MAZ 400	T1	3200	2750	T2L	3215	3000	T2	3700	3200
MAZ 450	T1	2850	2650	T2L	2950	2750	T2	3300	2900
MAZ 500	T1	2300	1960	T2L	2500	2210	T2	2820	2400
MAZ 560	T1	2200	1870	T2L	2650	2350	T2	2700	2350
MAZ 630	T1	1700	1450	T2L	2250	1920	T2	2350	2000
MAZ 710	T1	1700	1450	T2L	1850	1800	T2	2100	1850
MAZ 800	T1	1300	1120	T2L	1650	1470	T2	1800	1550
MAZ 900	T1	1300	1200	T2L	1450	1300	T2	1600	1450
MAZ 1000	T1	1050	900	T2L	1250	1120	T2	1400	1270
MAZ 1120	T1	850	770	-	-	-	T2	1200	1150
MAZ 1250	T1	800	700	-	-	-	T2	1100	1070

AISI 304 and AISI 304 L EXECUTION

Max RPM limits are the same for execution with stop bushing and with seeger ring

Fan model	arr.	Max RPM	arr.	Max RPM	arr.	Max RPM
MAZ 315	T1	3400	-	-	T2	3400
MAZ 355	T1	3100	-	-	T2	3400
MAZ 400	T1	2720	T2L	2735	T2	3145
MAZ 450	T1	2425	T2L	2510	T2	2805
MAZ 500	T1	1955	T2L	2125	T2	2400
MAZ 560	T1	1870	T2L	2255	T2	2295
MAZ 630	T1	1445	T2L	1915	T2	2000
MAZ 710	T1	1445	T2L	1575	T2	1785
MAZ 800	T1	1105	T2L	1405	T2	1530
MAZ 900	T1	1105	T2L	1235	T2	1360
MAZ 1000	T1	895	T2L	1065	T2	1190
MAZ 1120	T1	720	-	-	T2	1020
MAZ 1250	T1	680	-	-	T2	935

AISI 316 and AISI 316 L EXECUTION

Max RPM limits are the same for execution with stop bushing and with seeger ring

Max III III IIIII ale	, and bain		otop buon	ing and man booger	inig	
Fan model	arr.	Max RPM	arr.	Max RPM	arr.	Max RPM
MAZ 315	T1	3000	-	-	T2	3000
MAZ 355	T1	2740	-	-	T2	3000
MAZ 400	T1	2400	T2L	2410	T2	2775
MAZ 450	T1	2140	T2L	2215	T2	2475
MAZ 500	T1	1725	T2L	1875	T2	2115
MAZ 560	T1	1650	T2L	1990	T2	2025
MAZ 630	T1	1275	T2L	1690	T2	1765
MAZ 710	T1	1275	T2L	1390	T2	1575
MAZ 800	T1	975	T2L	1240	T2	1350
MAZ 900	T1	975	T2L	1090	T2	1200
MAZ 1000	T1	790	T2L	940	T2	1050
MAZ 1120	T1	640	-	-	T2	900
MAZ 1250	T1	600	-	-	T2	825

Duplex

		Max	RPM		Max	RPM		Max	RPM
Fan Model	arr	Stop	Seeger	arr	Stop	Seeger	arr	Stop	Seeger
		bushing	ring		bushing	ring		bushing	ring
MAZ 315	T1	4000	3000	-	-	-	T2	4000	3770
MAZ 355	T1	3650	3200	-	-	-	T2	4000	3770
MAZ 400	T1	3200	2750	T2L	3215	3000	T2	3700	3200
MAZ 450	T1	2850	2650	T2L	2950	2750	T2	3300	2900
MAZ 500	T1	2300	1960	T2L	2500	2210	T2	2820	2400
MAZ 560	T1	2200	1870	T2L	2650	2350	T2	2700	2350
MAZ 630	T1	1700	1450	T2L	2250	1920	T2	2350	2000
MAZ 710	T1	1700	1450	T2L	1850	1800	T2	2100	1850
MAZ 800	T1	1300	1120	T2L	1650	1470	T2	1800	1550
MAZ 900	T1	1300	1200	T2L	1450	1300	T2	1600	1450
MAZ 1000	T1	1050	900	T2L	1250	1120	T2	1400	1270
MAZ 1120	T1	850	770	-	-	-	T2	1200	1150
MAZ 1250	T1	800	700	-	-	-	T2	1100	1070

\land
•

		Max	RPM		Max	RPM		Max	RPM
n Model	arr	Stop	Seeger	arr	Stop	Seeger	arr	Stop	Seeger
		bushing	ring		bushing	ring		bushing	ring
MHZ 315	T1	3700	3150	-	-	-	T2	3900	3650
MHZ 355	T1	3400	3200	-	-	-	T2	3850	3600
MHZ 400	T1	2950	2400	T2L	3200	2700	T2	3600	2900
MHZ 450	T1	2650	2400	T2L	2950	2700	T2	3230	2750
MHZ 500	T1	2200	1870	T2L	2500	2215	T2	2720	2275
MHZ 560	T1	2050	1800	T2L	2400	2200	T2	2600	2200
MHZ 630	T1	1650	1400	T2L	2100	1800	T2	2275	1850
MHZ 710	T1	1500	1350	T2L	1850	1750	T2	2015	1820
MHZ 800	T1	1200	1050	T2L	1500	1325	T2	1700	1425
MHZ 900	T1	1200	1050	T2L	1350	1250	T2	1500	1350
MHZ 1000	T1	1050	850	T2L	1150	1050	T2	1260	1150
MHZ 1120	T1	825	750	-	-	-	T2	1175	1100
MHZ 1250	T1	765	650	-	-	-	T2	1050	1000

AISI 304 and AISI 304 L EXECUTION

Max RPM limits are the same for execution with stop bushing and with seeger ring

Fan model	arr.	Max RPM	arr.	Max RPM	arr.	Max RPM
MHZ 315	T1	3145	-	-	T2	3315
MHZ 355	T1	2890		-	T2	3275
MHZ 400	T1	2510	T2L	2700	T2	3060
MHZ 450	T1	2255	T2L	2510	T2	2745
MHZ 500	T1	1870	T2L	2125	T2	2310
MHZ 560	T1	1745	T2L	2040	T2	2210
MHZ 630	T1	1405	T2L	1785	T2	1935
MHZ 710	T1	1275	T2L	1575	T2	1710
MHZ 800	T1	1020	T2L	1275	T2	1445
MHZ 900	T1	1020	T2L	1150	T2	1275
MHZ 1000	T1	895	T2L	980	T2	1070
MHZ 1120	T1	700	-	-	T2	1000
MHZ 1250	T1	650	-	-	T2	895

AISI 316 and AISI 316 L EXECUTION

Max RPM limits are the same for execution with stop bushing and with seeger ring

Fan model	arr.	Max RPM	arr.	Max RPM	arr.	Max RPM
MHZ 315	T1	2775	-	-	T2	2925
MHZ 355	T1	2550			T2	2890
MHZ 400	T1	2215	T2L	2400	T2	2700
MHZ 450	T1	1990	T2L	2215	T2	2425
MHZ 500	T1	1650	T2L	1875	T2	2040
MHZ 560	T1	1540	T2L	1800	T2	1950
MHZ 630	T1	1240	T2L	1575	T2	1705
MHZ 030	T1	11240	T2L	1390	T2	1510
MHZ 710 MHZ 800	T1	900	T2L	1125	T2	1275
	T1			-	T2	-
MHZ 900		900	T2L	1015		1125
MHZ 1000	T1	790	T2L	865	T2 T0	945
MHZ 1120	T1	620	-	-	T2 To	880
MHZ 1250	T1	575	-	-	T2	790

Duplex									
		Max	RPM		Max	RPM		Max	RPM
Fan Model	arr	Stop	Seeger	arr	Stop	Seeger	arr	Stop	Seeger
		bushing	ring		bushing	ring		bushing	ring
MHZ 315	T1	3700	3150	-	-	-	T2	3900	3650
MHZ 355	T1	3400	3200	-	-	-	T2	3850	3600
MHZ 400	T1	2950	2400	T2L	3200	2700	T2	3600	2900
MHZ 450	T1	2650	2400	T2L	2950	2700	T2	3230	2750
MHZ 500	T1	2200	1870	T2L	2500	2215	T2	2720	2275
MHZ 560	T1	2050	1800	T2L	2400	2200	T2	2600	2200
MHZ 630	T1	1650	1400	T2L	2100	1800	T2	2275	1850
MHZ 710	T1	1500	1350	T2L	1850	1750	T2	2015	1820
MHZ 800	T1	1200	1050	T2L	1500	1325	T2	1700	1425
MHZ 900	T1	1200	1050	T2L	1350	1250	T2	1500	1350
MHZ 1000	T1	1050	850	T2L	1150	1050	T2	1260	1150
MHZ 1120	T1	825	750	-	-	-	T2	1175	1100
MHZ 1250	T1	765	650	-	-	-	T2	1050	1000

-- Casing

Dunley

According to MAZ Atex and MHZ Atex Technical Documentation deposited by the Notified Body, casing of MAZ Atex and MHZ Atex fans are manufactured in black steel and painted or in AISI 304, in AISI 304 L, in AISI 316, in AISI 316 L or in Duplex SS2205.

Casing is continuously welded and reiforced with stiffeners intermittent welded.

Casing is provided with inspection door. It is held in position by bolts and sealed.

The standard EN 14986 requires that the inspection door, outlet and inlet joints and eventual holes in the casing for the fixing screws shall be sealed. As a consequence the casing can be considered as gas tight without release (or with reduced release); this could be an aim in the single inlet fan series, but it is out of application in the double inlet fan series, as for the MAZ Atex and MHZ Atex series, object of the Category 2G certification.

The fan shaft must be installed in a horizontal position.

-- Application limits here following listed are as declared in the Technical Documentation deposited by the Notified Body and must be strictly observed.

Fans shall operate inside the field covered by the catalogue curves, the use of the fan outside this field could generate instability and vibrations;

fans can neither be used in the part of catalogue curves identified as "Area 1" because of the same risk of instability and vibrations:

therefore in Atex application the fan must absolutely NOT be used outside catalogue field and in the zone identified by "Area 1".

MAZ Atex, MHZ Atex.

absolute pressure from 0.8 bar to 1.1 bar;

aerodynamic energy increase of less than 25 kJ/kg;

atmospheres with a maximum 21 vol% oxygen content;

maximal temperature range of conveyed fluid between -20 and +60 °C

(except. from more stringent limits according to the motor model and brand installed);

gas explosion Groups IIA and IIB; temperature class T3

As already declared for all fans of this handbook: no for conveying fluids containing dust.

NPL Atex, NPA Atex

-- Structure with motor support base

NPL Atex and NPA Atex plenum fans for application in Group II Category 2G are in setting 4, with structure supporting the motor and wheel installed on the motor shaft.

NPL Atex and NPA Atex plenum fans for vertical orientation are in setting 5V, with the motor flanged on a rear plate and a steel structure connecting the motor rear plate with the inlet-cone front plate.

Setting 4 and setting 5V are supplied complete with all features and devices necessary to comply with the ATEX directive requirements: no modifications are allowed because plenum fan must correspond with the technical specification declared in the documentation deposited by the Notified Body.

Structure is manufactured in steel S235JR, AISI 304, AISI 304L, AISI 316, AISI 316L or Duplex. Fixing screws and rivets are in steel 8.8, in AISI 304, AISI 304L, AISI 316, AISI 316L; screws and rivets for fixing the copper linings are in brass.

Plenums are provided with inlet guards and protective enclosure at outlet side. Inlet guard:

where customer gives no specification the guard is positioned between inlet-cone and panel for setting 4 and outside for setting 5; if guard is outside it is of flat-surface type. In both cases the inlet surface of the structure is level to allow any connection to plant ducting;

where there is the inlet flexible connection, guard can be installed in every position: between inlet-cone and panel, between structure and flexible connection or upstream the flexible connection.

NOTE: positioning of the guard upstream of the flexible connection allows better air performances.

Outlet protective enclosure for setting 4:

for size 250, 280 and 315 rear guard wall in front of the wheel is completely manufactured in copper; for other sizes a copper plate is fixed inside the enclosure in front of the back-plate / hub; a copper lining is fixed on the outward frame supporting the enclosure for sizes 400, 500 because wheel diameter is up to the frame dimensions. For NPA 630 plenum fan a copper lining is fixed on the motor-support wall facing the wheel.

All screws used for fixing these copper anti-spark protections are of brass.

The protection is of rigid design in order to avoid risk of rubbing on the wheel, due to the use of an appropriate thickness for the guard, stiffeners or by splitting the guard in smaller pieces (the joints between pieces increase the rigidity).

Outlet protective enclosure for setting 5V:

a copper plate is fixed on the motor plate in front of the wheel backplate / hub. Screws used for fixing the copper plate protection are of brass.

Laterally to the enclosure the guards are fixed to the supporting bars of the structure.

-- Impeller - shaft attachment

All NPL Atex and NPA Atex plenum fans have impeller hub fixed on shaft with the use of key and relative safe grub screw and positive locked between the shaft shoulder and a locking screw and washer at the tapped shaft end. Eventually a washer is set between the shoulder and the hub (ex. in case of hub in aluminum).

In setting 4 the impeller shaft must be installed in a horizontal position.

Vertical installation is accomplished by the setting 5V.

-- Operational limits

peed of NPL Atex plenum fan series in dependence of the wheel	

	Max RPM			
Fan model	Standard material	AISI 304, AISI	AISI 316, AISI	Duplex
	(S275JR, DC04, S355JOWP)	304 L	316 L	•
NPL 250	5200	4420	3900	5200
NPL 280	4735	4025	3551	4735
NPL 315	4315	3668	3236	4315
NPL 355	3825	3251	2869	3825
NPL 400	3400	2890	2550	3400
NPL 450	3025	2571	2269	3025
NPL 500	2720	2312	2040	2720
NPL 560	2430	2065	1822	2430
NPL 630	2150	1827	1612	2150
NPL 710 Cl.1	1600	1360	1200	1600
NPL 710 Cl.2	1915	1628	1436	1915
NPL 800 Cl.1	1400	1190	1050	1400
NPL 800 CI.2	1700	1445	1275	1700
NPL 900 Cl.1	1250	1062	938	1250
NPL 900 CI.2	1500	1275	1125	1500
NPL 1000 Cl.1	1050	893	788	1050
NPL 1000 CI.2	1350	1148	1013	1350
NPL 1120 Cl.1	900	765	675	900
NPL 1120 CI.2	1150	978	863	1150
NPL 1250 Cl.1	765	650	574	765
NPL 1250 Cl.2	1085	893	814	1085

Maximal permissible rotational speed of NPA Atex plenum fan series in dependence of the wheel material:

		Max	RPM	
Fan model	Standard material	AISI 304,	AISI 316, AISI	Duplex
	(S275JR, DC04, S355JOWP)	AISI 304 L	316 L	
NPA 315	4500	3825	3375	4500
NPA 355	4000	3400	3000	4000
NPA 400	3700	3145	2775	3700
NPA 450	3300	2805	2475	3300
NPA 500	2850	2423	2138	2850
NPA 560	2650	2253	1988	2650
NPA 630	2350	1998	1763	2350
NPA 710	2100	1785	1575	2100
NPA 800	1800	1530	1350	1800
NPA 900	1600	1360	1200	1600
NPA 1000	1400	1190	1050	1400
NPA 1120	1200	1020	900	1200
NPA 1250	1100	935	825	1100

-- Application limits here following listed are as declared in the Technical Documentation deposited by the Notified Body and must be strictly observed:

- absolute pressure from 0.8 to 1.1 bar;

- aerodynamic energy increase of less than 25 kJ/kg;

- maximal temperature range of conveyed fluid between -20 and +60 °C

(except. from more stringent limits according to the motor model and brand)

- maximum oxygen content both in the conveyed fluid and in the installation environment: 21 vol%;

gas explosion Groups IIA and IIB; applicability also for hydrogen (+H2) but only in Settings 4 and 5V (with impeller directly coupled to the motor shaft)

temperature class: the same as motor temperature class and quoted also on the plenum fan label

As already declared for all fans and plenum fans of this handbook: no for conveying fluids containing dust

2.5.4 Ignition hazard assessment

The following is an extract of the main explosion risks which has been assessed for the fan and plenum fan series dealt with in this manual. The division in "Normal operation" and "During foreseeable malfunction" is due to the different fan Category 3 and 2: for Category 3 only the ignition risks which can take place during normal operation are considered; for Category 2 extected malfunctions must also be considered. The occurrence of "Rare malfunction" is not within the scope of category 2, but is related to Category 1, which is out of Comefri production. Every type of ignition protection of non-electrical equipment has a symbol (see table below), which is reported on the fan label.

symbol	Type of ignition protection
d	for a flameproof enclosure
C ******	for constructional safety
b	for control of ignition source
р	for pressurized equipment
k	for liquid immersion
t	for dust ignition protection by enclosure

****** Most of the ignition protections for the fan series TZAF FF Atex, VTZ Atex, NTHZ Atex, THLZ FF Atex, MAZ Atex, MHZ Atex, TLZ Atex, TLI Atex, TZAF Atex, THLZ Atex, HLZ Atex, TLE Atex, THLE Atex, TEAF Atex, NTHE Atex, THE (in steel) Atex, KHLE Atex, NPL Atex, NPA Atex, TE (in steel) Atex are type "c".

Ignition hazard assessment

POTENTIAL IGNITION SOURCE	DESCRIPTION	FREQUENCY OF HAZARD OCCURENCE	REASONS FOR ASSESSMENT	DESCRIPTION OF THE MEASURE APPLIED	TECHNICAL DOCUMENTATION
Transportation / Storage damage	Reduction of gap between static and moving components	Not relevant	deformations with friction between the moving parts and the fixed parts.	Rigid / resistant design / construction Manufacturer's instructions for transport / storage and checks	Operating and Maintenance Manual
General environmental influences	 a) 40°C higher temperatures b) Humidity c) Corrosivity d) Nature of conveyed atmosphere 	Normal operation	 a) Electric motors generally are designed for a maximum ambient temperature of +40 °C. If motor is in the flow of a conveyed fluid with temperature higher than 40°C, it is necessary the application of a specific motor allowed to operate at the fluid temperature. b) problems with electrical components and sticky dust on static and moving components c) weakening of materials d) pollution and electrostatic charges 	 spectron and cleaning operations can be easily carried out. appropriate materials and coatings / surface treatments are adopted in accordance with the Standard. The fans are intended to move dust-free air or slightly dusty air. Conductive materials and Grounding. 	Manufacturer's instructions / Certificate / Declaration and motor marking Operating and Maintenance Manual
Mechanical spark	Hot spots/surfaces	Normal operation	Mechanical friction/grinding cannot be excluded	The minimum clearance between rotating elements and stationary parts is defined in accordance with EN 14896	Constructional measures design according to technical drawings Operating and Maintenance Manual
Deposits forming clouds or thick layers	Electro-static discharge Hot spots/surfaces Mechanical faults		Bridging of gap between static and moving components	The fans are intended to move dust-free air or slightly dusty air. Conductive materials and Grounding. An appropriate temperature class is assumed. Suitable facilities are provided so that routine inspection and cleaning operations can be easily carried out. Instruction concerning inspection, cleaning. Proper vibration control	Operating and Maintenance Manual
Excessive fluid temperature	Possible incorrect application of the Standard EN 14986 Possible inadequate construction	Normal operation	Increase the risk of ignition, in particular in presence of explosive atmosphere with low ignition temperature.	the fan is designed, manufactured, certified and placed on the market in compliance with the requirements of the standard EN 14986	EN 14986 Labelling and marking Operating and Maintenance Manual
Housing deformation	Mechanical sparks Hot spots/surfaces	During foreseeable malfunction		Rigid housing design and/or separation of ductwork by flexible joints. The Operating and Maintenance manual specifies that it is up to installer / customer responsibility to assure that the connecting ductwork does not charge forces and torques on the fan casing/structure.	Technical project documentation Operating and Maintenance Manual

Impeller deformation or fault	Mechanical sparks Hot spots/surfaces	During rare malfunction	Contact/Friction/Impact between static and moving components	rigid design and shall be able to withstand a test run at a minimum of 1,15 times the maximum operational rotating speed for at least 60 design that enables a primary stress calculation based on 2/3 of the yield stress Suitable material pairings Suitable linings and tip extensions	Technical project documentation
Foreseeable misalignment and wear and tear	Mechanical sparks Hot spots/surfaces	During foreseeable malfunction	Contact/Friction between static and moving components	Minimum clearance Suitable material pairings Suitable linings and tip extensions Instruction concerning routine inspection and checks	Technical project documentation Operating and Maintenance Manual
Closing of inlet ducting, and distortion of casing by reduced internal pressure	Mechanical sparks Hot spots/surfaces	During foreseeable malfunction	Contact/Friction between static and moving components	Rigid housing design Minimum clearance Suitable material pairings Suitable linings and tip extensions Instruction concerning routine inspection and checks for a correct installation and that the fan operates on the project duty point	Technical project documentation Operating and Maintenance Manual
Shafts gliding in bearings	Mechanical sparks Hot spots/surfaces	During foreseeable malfunction	Contact/Friction between static and moving components	Proper fixing of the bearings on the shaft Instruction concerning routine inspection and checks Suitable material pairings Suitable linings and tip extensions	Manufacturer's instructions Operating and Maintenance Manual
Loosening impeller	Mechanical sparks Hot spots/surfaces	During foreseeable malfunction	Contact/Friction between static and moving components	Proper attachment (in relation to category 2 or 3) of the impeller to shaft give a means of both positive location and drive. Suitable material pairings Suitable linings and tip extensions	EN 14986 Technical project documentation
Fan bearing failure	Mechanical sparks Hot spots/surfaces	During foreseeable malfunction	Contact/Friction between static andmoving components Component overheating	Bearings calculated according ISO 281 for a specific lifetime Instruction concerning routine inspection, checks and regreasing Recommended Lifetime (replacement interval) Suitable material pairings Suitable linings and tip extensions	Manufacturer's instructions Operating and Maintenance Manual
Fan bearing failure	Hot spots/surfaces	During foreseeable malfunction	Incorrect belt tensioning	Instruction concerning routine inspection and checks	Manufacturer's instructions Operating and Maintenance Manual
Motor bearing failure	Hot spots/surfaces	During foreseeable malfunction	Component overheating	Instruction concerning routine inspection, checks and regreasing, vibration control. Correct dimensioning of maximal applicable radial and axial load of the motor	Manufacturer's instructions Technical project documentation Operating and Maintenance Manual

Foreign particles	Mechanical sparks	Normal operation	Contact with foreign particles which can cause sparks or damage to the protective devices	Rigid protection IP20 against foreign particles	Operating and Maintenance Manual
Electrostatic charges	Ignition Sparks	During foreseeable malfunction		Electrostatic discharges by earthing	Operating and Maintenance Manual
Electrostatic				Electrostatic discharges by earthing	Manufacturer's Declaration
discharges in connection with	Ignition Sparks	During foreseeable malfunction		Belts comply to ISO 1813	Technical project documentation
belts				Limitation of the maximum speed	Operating and Maintenance Manual
Belts slipping	Hot spot	Normal operation		Correct belt tensioning. Instruction concerning routine inspection & checks	Operating and Maintenance Manual
Electrical components	Ignition Sparks	Normal operation		Electric installation instructions of electrical equipment	Manufacturer's instructions

2.5.5 Caption of fan label for anti-spark execution

GROUP II, Category 3

Comefri Made in Italy www.comefri.com Udine - ITALY Via Buja, 3 - 33010 Magnano in	Riviera
Codice Articolo	1
W9066601	nE
VENT.THLZ 180 TA FF LG0 FCU 2.08 ATE Ordine di Produzione Anno / Settimana Progetto Posizione OP1 B9039554 2019 49 PCU 2.08	x-36
Potenza Assorbita	MIN MAX
KW 3 KW °C	-20 °C +60 °C
Velocita di Rotazione di Funz MAK Rotata	Pressione Totale
min ⁻¹ 2000 mm ⁻¹ m ² /s	Pa
Rif.Manuale Tecnico	

Code number: fan code

Type: fan description

Production number + year + week: serial number Project – item: customer project reference Absorbed power: operating shaft power MAX absorbed power: maximum permissible shaft power Operating temperature: operating temperature of the fan Operating temperature MIN: minimum permissible inlet temperature Operating temperature MAX: maximum permissible inlet temperature Operating speed: operating fan rotational speed [RPM] Operating speed MAX: maximum permissible fan rotational speed [RPM] Volume: operating air flow Total pressure: operating total fan pressure Ex III 3G c Ex h IIB T4 Gc :

II indicates the group, 3 the Category, G means that the fan can move dust-free air or lightly dusty air, c indicates the type of safety measure adopted, Ex h is the defined symbol for non-electrical Atex equipment, IIB is the fluid type class, T4 the temperature class, Gc is the Equipment Protection Level.

NOTE: IIB indication means that application extends to both IIA and IIB fluid classes. Technical handbook reference: code and version of "OPERATING AND MAINTENANCE MANUAL". Note : In case of the peculiar indication for the fluid type class as **IIB + H2**, it means that fan / plenum fan is suitable for application with the gases of class IIA, IIB and also for hydrogen. To be remarked: NOT for the other gases belonging to class IIC, but ONLY for hydrogen.

GROUP II, Category 2

Label for Category 2 is the same as for Category 3 with the addition of the further field "Certificate No." i.e. the deposit number of technical documentation by the Accreditation Institute (notified body), required for Group II, Category 2.

TZAF FF Atex, NTHZ Atex, MAZ Atex, MHZ Atex fan series and NPL Atex, NPA Atex plenum fan series object of the Category 2G certification, due to the possible types of installation A or B, shall be 2G certified both on the inside and the outside.

2.6 <u>Fans and Plenum Fans with spark-proof execution according to</u> <u>Standard VDMA 24169</u>

From the 1st July 2003 the entry in force of ATEX Directive repealed every other directives and national standards concerning the matter of potentially explosive atmospheres in all Countries belonging to EU.

Specifically for fans and plenum fans, VDMA 24169 has to be considered not more in force in the EU market and superseded by standard EN 14986, which is the harmonized standard related to ATEX Directive within the scope of design of fans and plenum fans working in potentially explosive atmospheres, so that fans and plenum fans put on the market or put into service inside the EU must comply with EN 14986.

Note: EN 14986 includes the requirements of VDMA 24169 and therefore covers the whole application scope of VDMA 24169.

HANDLING AND STORAGE

3.1 <u>Receiving</u>

Each fan and plenum fan is carefully checked before shipment. Moreover all fans and plenum fans equipped with motor are runtested before leaving the factory.

When receiving a fan or plenum fan it is necessary to check the conformity of the fan or plenum fan with the order (execution,

rotation, power and polarity of installed motor, fittings, etc.); after installation we do not accept returns of non-compliant devices. Furthermore it is necessary to verify that it has not been damaged during the transport, especially the rotating and the electric parts. In case of damage, they must be immediately noted on the delivery note and communicated to the forwarding agent. The lorry driver must countersign the document so that any damage which occurred during the transport can be reported to the insurance company. Comefri will not be responsible for the transport and the handling of the device at the customer's premises.

3.2 <u>Handling</u>

The handling of the fans and plenum fans requires adequate care and lifting tools as foreseen by Directive 2006/42/EC and subsequent amendments according to the weight and packaging of the device. Special care must be taken to ensure that the fan and the plenum fan will never be lifted by the shaft ends, motor

transport eyebolts, bearing supports and inlet or outlet flanges.

Lifting points of the fans are the base frame, housing frames or lifting eyebolts, if available. Before handling the fan, release the tension of the belts or completely remove the belts. Lifting points of the plenum fans are the holes in the base plate of the structure (for middle sizes) or the holes in the side bars of the base frame of the structure (for bigger sizes). Never stack devices one on top of the other after they have been removed from the box. Be careful of improper handling, though not damaging the device, often leads to the need to rebalance the impeller.

Particular care must be taken in handling fans and plenum fans provided either with special painting or special protective coatings and treatments for which a slight undetected damage will always entail the absence of protection above the metal surface and therefore it might be cause of very serious failures during operation. Any damage to protective coatings caused during the transport is not covered by Comefri warranty. The fan weights are indicated in the technical catalogue.

3.3 <u>Storage</u>

Store the fan or plenum fan properly to protect them against filth and moisture. Corrosive atmospheres must be avoided. Use of a tarpaulin to cover the device will aid in keeping it clean and dry. Avoid condensation, especially in hot and humid environments. Permissible storage temperature range is between -20°C and Fans and/or plenum fans manufactured in special execution for low temperature, as exception from the previous storage temperature range, can be stored down to a minimal temperature of -50 $^{\circ}$ C; before start-up they shall be warmed-up gradually and slowly to the operating temperature.

If the fans are stored for over 6 months, you must release the tension of the belts (or completely remove the belts) and rotate the shaft manually from time to time in order to allow better distribution of the grease inside the bearings. Keep the fan or plenum fan away from machinery producing vibrations as it could stress the bearings.

INSTALLATION

4

Installation must be carried out by trained personnel in compliance with these operating instructions.

See the technical documentation in the relative technical catalogue for additional information (characteristic dimensions, distance and diameter fixing holes, weight, etc...)

4.1 Checks prior to installation

- Check the maximum performance data (see par. 2.3, 2.4) and the rotation direction indicated on the fan plate, comparing these with the impeller rotation and the rotating field of the motor, especially in the presence of an anti-rotation device.
- Check that all bolts are properly tightened. Tightening torques for bearings shall be according to the manufacturer catalogue; the tightening torques for all the bolts on the fan and plenum fans shall be according to the prescriptions of the technical bolt handbooks.
- Check the integrity of the fan painting and of all the sealed parts. Take corrective actions if necessary (i.e. retouching painting before going ahead with further preparation phases. In Atex execution see par. 2.5.3.1 for painting requirements).
- Rotate the impeller manually and make sure that is does not touch the inlet-cone or the Forefinger[®] device. During this operation, check that the bearings do not show any sign of irregular friction (see par. 6.6).

TLZ, TLI, TLE fans have the impeller with forward-curved blades. For these types of fan, make sure that connection to the duct is in accordance with the requirements to be respected in order to obtained the correct resistance of the circuit (considered in the design phase for the selection of the fan) so that the motor will not be overloaded.

NTHZ, VTZ, THLZ FF, MHZ, THLZ, HLZ, THLE, NTHE, THE, KHLE fans, NPL, NPL ALU, TE, NPE plenum fans have the impeller with backward-curved blades; TZAF FF, MAZ, TZAF, TEAF fans, NPA, NPA ALU, PEAF plenum fans have the impeller with backward-curved airfoil blades; both these types of fans and plenum fans can work also with circuits showing a flow resistance lower than expected without having the risk of burning the motor.

4.2 Installation / Fixing

The type of installation must be considered when choosing the fan. Special attention must be paid to fans and plenum fans which are to be installed in atmospheres with a high humidity and critical temperature level.

The fan and plenum fan must be firmly fixed to a foundation or steel base frame. They must be fixed while avoiding any strain and deformation to the support structure. When using a foundation and fixing bolts, spacers should be added to ensure perfect contact between the fan or plenum fan and its base frame. Otherwise misalignment or bending moments could occur inducing anomalous vibrations during operation. A reinforced concrete foundation is considered ideal for mounting the fan and plenum fan. When installing on steel structures or racks, the design must consider both the weight of the fan or plenum fan and the dynamic forces generated by the electric motor/impeller rotation. It is absolutely necessary that these structures have a minimum resonance frequency higher than 50% of the fan or plenum fan rotation frequency. When installing on a concrete foundation, its weight should be four times that of the rotating group in addition to that of the electric motor (almost twice the weight of the complete fan or plenum fan unit).

No force or vibration must be transmitted to the support structure. To this purpose, use adequate anti-vibration dampers and flexible couplings for ducting.

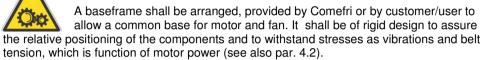
Incorrect fixing of the fan or plenum fan can affect its operation and generate dangerous situations.

Safety devices removed from the machine must be reinstalled before the electrical connections are made.

Standard Comefri fans and plenum fans are designed to work with the shaft in a horizontal position. If the fan and plenum fan have to be used with a vertical shaft, it must be specified when placing the order and the specific special version must be requested (for spark-proof execution only the shaft in horizontal position is allowed with the exception of setting 5V, which is specific for vertical installation).

For impellers of the plenum fan series NPL, NPL ALU, NPA, NPA ALU, TE, NPE, PEAF when supplied as impeller and inlet-cone unit as loose components check the correct overlapping of the inlet-cone and impeller according to the catalogue of reference and that the radial clearance is evenly distributed along the circumference.

Plenum fans do not meet the provisions of the CE labelling (e.g. they have an impeller without guards).


The fan and plenum fan must nevertheless be installed in accordance with CE requirements.

It is available a series of protective devices as the inlet and outlet guards, the protective enclosures for plenum fans in setting 4, which can be requested at the order confirmation in function of the installation type and according to standard UNI EN ISO 13857. For NPL, NPL ALU, NPA, NPA ALU, TE, NPE, PEAF plenum fan series, when provided as impeller and inlet-cone loose components, due to the unknown final installation, outlet protections have to be manufactured by the customer. As indicated in the relevant Catalogue can be

ordered a prearrangement for the outlet protective enclosure, consisting of a supporting frame, fixed to the plenum main structure. See par. 2.5.3.1.

For plenum fans in Atex execution look up at par. 2.5.3

4.3 Motor and Belt Drive

Motor should be install to baseframe by means of a motor rail which allows belt tensioning and proper alignment.

Minimum pulley diameter. The theoretical life L_{10} can only be guaranteed if the diameter of the pulley corresponds to a minimum value, e.g. if the permissible load of the bearings is not exceeded.

Use our fan selection program *Aeolus* to choose the transmission. Otherwise refer to the technical catalogues of the pulley/transmission manufacturers.

Make sure that the pulleys of fan and of motor are properly aligned. Fit the belts and tension them according to instructions (see 6.5)

If the fan is in spark-proof execution, see par. 4.5.

4.4 Electric wiring

COLLEGARE SUBITO

Ŧ

DISTANZE DAL CANTELLO

The motor must be connected at the terminal board according to the information provided by the manufacturer of the motor.

Y	Δ
W2 U2 V2 O O O U1 V1 W1 R S T	W2 U2 V2 U1 V1 W1 R S T

Motors with rated power up to 4kW can be direct started, while for those with rated power beyond 4kW star/delta soft starting is normally used.

The motor must be protected against overloading and particular care is required when using motors with spark-proof protection or equipped with thermistors. Damage caused by insufficient motor protection makes the manufacturer's warranty null and void. The customer is responsible for earthing the fan and plenum fan.

4.5 Spark-proof execution according to ATEX 2014/34/EU for Fans and Plenum Fans

Fans and plenum fans in Atex execution are declared by Comefri to be in compliance with Atex requirements: if alterations are made to the machinery without prior consultations with Comefri, the declaration becomes invalid.

Devices in Group II Category 2G must be in agreement with Technical Documentation deposited with the Notified Body.

CHECK that the spark-proof category of the fan corresponds to the hazardous zone (see 2.5.1).

Fans

The fan is of a rigid design and this reduces the risk of deformation from accidental impacts which could cause the impeller or rotating parts to come into contact with the casing. Nevertheless depending on operating conditions, be careful to avoid accidental impacts especially with the weaker parts of the casing. Arrange protective devices if necessary.

Casing for single inlet fans in Category 2. The inspection door is sealed; the installer must seal the inlet, outlet and all other couplings with a sealing material or apply gaskets, ATEX compliant. This does not apply for TZAF FF Atex, NTHZ Atex, MAZ Atex, MHZ Atex double inlet fans with Atex Category 2 execution.

Plenum Fans

Plenum fans shall be protected by the inlet guard and by the protective enclosure around the impeller as indicated in par. 2.5.3. The enclosure around the plenum fan is of a rigid design and this reduces the risk of deformation from accidental impacts which could cause the impeller or rotating parts to come into contact with the enclosure parts. Nevertheless depending on operating conditions, be careful to avoid accidental impacts; arrange protective devices if necessary.

Connection to ductworks

Possible causes of reducing the clearances between the casing and the moving parts include distortion of the casing caused by connection to ductwork. Both in presence or absence of flexible connections, it is up to user's responsibility to design connecting ductwork in order to avoid in any case, that forces and torques are charged on the fan casing or on the plenum fan structure.

Horizontal installation

Fans and plenum fans in Atex execution must be installed with the shaft horizontal. Vertical installation is available in setting 5V.

Stationary and rotating parts

A potential explosion risk can come from an accidental contact between stationary and rotating parts placed close one to another:

INLET-CONE and SHROUD FOREFINGER® and SHROUD SINGLE INLET WHEEL BACKPLATE / HUB / SHAFT and CASING SIDEPLATE SEAL / SEAL HOUSING and SHAFT PLENUM FAN WHEEL (e.g. hub, back-plate) and PROTECTIVE ENCLOSURE / MOTOR- SUPPORT FAN SHAFT / MOTOR SHAFT / PULLEYS and TRANSMISSION GUARD

In par. 2.5.3 are indicated the provisions arranged to prevent risk from accidental contact as required by the relevant Standard.

Stationary parts facing rotating parts have been made of material pairings as described in paragraph 2.5.3.1 and observing the clearance as described in par. 2.5.3.2 to satisfy Atex Standard requirements.

Due attention must be paid to possible axial movements of all rotating elements (for ex. pulley), that must be kept in position or protected against displacement.

NOTE: in Atex application cooling fans shall not be used (see par. 2.5.3.1).

Clearance between inlet-cone and shroud.

The minimum clearance values between inlet-cone and shroud are provided in the Appendix.

The clearance may change with rotation, temperature, and due to vibrations and belt drive tension.

The clearance must be checked before commissioning after having tensioned the belt.

As said here above, pay attention that the connecting ductworks do not charge forces and toques on the fan casing or plenum fan structure.

The clearance value shall be checked along the circumference.

Protections against foreign particles

As required by Standard EN 14986, the fan and plenum fan shall be protected against the entry of foreign particles that could create an ignition hazard.

In compliance with this standard requirement, Comefri supplies fans and plenum fans with the following provisions.

Fans:

fans are provided with proper inlet and outlet protective guards according to grade IP20 (IEC 60529).

Plenum fans:

Comefri standard Atex execution provides plenum fans in setting 4 and 5V equipped with the proper protection guard at the inlet and the protective enclosure at the outlet according to grade IP20 (IEC 60529). The guard of the protection enclosure in setting 4 is fixed at the front panel of the structure and at an auxiliary frame provided between motor and wheel. In setting 5V a guard is fixed at the frame connecting inlet plate and motor plate. (see sketch in the appendix).

These guards and protective enclosures shall not be tampered, nor substituted with others of different type, causing the decay of the Comefri certification for Atex execution.

As exception fan or plenum fan can be supplied without protections provided both the following conditions are respected:

- the customer has produced a written declaration where he states that upon analysis the kind of installation has proved to be itself a guarantee of protection against foreign particles that could create an ignition hazard and

- the customer requires by writing in the commercial order not to supply the protections.

As warned in the Standard EN 14986, the presence of inlet duct is not itself a guarantee against foreign particles that could create an ignition hazard, but the risk of entry of foreign particles is to be analyzed anyway.

Vibrations (fans and plenum fans)

The completed fan and plenum fan must meet the vibration levels recommended by ISO 14694 and ISO 10816 as appropriate for its size and application. Vibration speed should preferably be measured at the bearing cap for fans and at the motor for plenum fan.

For the correct installation avoiding vibrations, see par.4.2. Furthermore the following must be considered.

Fans shall operate inside the field covered by the catalogue curves, the use of the fan outside this field could generate instability and vibrations;

fans can neither be used in the part of catalogue curves identified as "Area 1" because of the same risk of instability and vibrations:

therefore in Atex application the fan must absolutely NOT be used outside catalogue field and in the zone identified by "Area 1".

Standards such as ISO 5801 and ISO 5802 prescribe the type of inlet and outlet ducting connections which ensure a uniform speed at the fan inlet and consequently a low degree of vibration. The fan and plenum fan must be installed in a way which avoids disturbances or building up vibrations in the fan, plenum fan. Examples of improper installations:

sharp bends in the ducting near the inlet or outlet, unit walls too close to the fan sideplates, obstructions due to unsuitable guards. These installation errors must absolutely be avoided in anti-spark applications according to ATEX Directive.

Power drive

If the fan is driven through belts, they must be electrically conductive, in order to be incapable of developing an incendiary electrostatic discharge during operation according to ISO 1813. The drive guard must be made of electrically conductive material so that, according to the electrical earthing (described in the following paragraph), every part (guard, pulley, belts) is electrically equipotential and so arranged as to provide a leakage path to earth for any static electricity which occurs on the belt(s). The electrical resistance to earth shall not exceeds 1 M Ω .

V-belts must be declared by manufacturer to be compliant with Atex requirements.

The drive guard is critical due to the risk of contact between the rotating and fixed components: see par. 2.5.3.1. For this reason a disc of material according to the standard EN 14986 4.7.2 must be installed in the internal side of the guard in front of the pulleys with an outside diameter at least from 5 to 10 mm greater than rotating part dimension; clearance between the motor or fan shaft and the edge of the passage hole shall be 0,5 % of the shaft diameter (minimum 2 mm and maximum 13 mm) (see par. 2.5.3.2).

The pulleys must be balanced according to ISO 21940-11.

The belt speed shall not exceed 30 m/s.

Earthing conductive parts

Comefri guarantees that all parts of the fan are electrically equipotential; the fan must be earthed by the installer. Guards for transmission devices and for coupling must be manufactured with conductive material.

On customer's request can be arranged fixing points for the earthing

connection.

Electrical equipment

All electrical equipment (such as drive motors and monitoring equipment) must comply with Atex protective category appropriate for the fan.

The motor must comply with Atex standards and its Atex field of application must correspond with the field of application of the fan or plenum fan: this means that it must be provided with the same group, category, type of explosive atmosphere or superior and guarantee the maximum surface temperature as the fan or plenum fan.

Fan + Motor.

When fan is put in the market provided with motor (e.g. fan in arr. 11 - 11/D, plenum fan in arr. 4 and 5V) it is duty of Comefri to install motor, transmission, safe protection devices to be able to guarantee the Atex execution and give the Atex certification. The feature of this Atex execution must be respected during successive maintenance process. Motor can be provided by Comefri or by the customer to Comefri, if the motor has the proper ATEX certification and/or motor label attesting the compliance with Directive 2014/34/EU "Atex" coherent to Atex fan requirement (Group, Category, Temperature class, etc).

In the operational life, maintence which requires motor substitution can be carried on by the customer/user without decay of Comefri Atex certification, provided maintenance is performed according the proper prescriptions.

When Comefri supplies the fan as "bare shaft" fan or the motor provided by customer does not comply the correct Atex requirements, Comefri Atex certification applies only to the fan, considered as a "partly completed machinery", and the Atex certification of the whole machine is duty of the customer.

Electrical installation of the fans must comply with the requirements of standards EN 60079-14.

The motor must be positioned so as to assure that adequate cooling air is available and that the ventilation inlets cannot be blocked. We recommend installing circuit breakers.

Operation temperature range of the motor is generally from -20 °C to +40 °C according to the motor model and brand, which is more restrictive than Atex Application temperature range.

Particular care for plenum fans and fans where motor is installed in the airstream.

Motor temperature limits must comply temperature condition of the zone where motor is installed.

START-UP

5.1 Safety checks

- Disconnect and secure all fan power connections at OFF.
- Check that all the mechanical and electrical safety devices have been installed and connected.
- Check that protective devices as inlet and outlet guards, protective enclosures, shaft guards, transmission guard are fitted.

Check that no foreign bodies are in the ducts and in the fan

(tools, small components etc.).

- Rotate the impeller by hand and make sure no parts rub.
- Check the alignment and parallelism of the pulleys and the tension of the belts.
- Power, voltage and frequency must be checked referring to the electric motor plate of the fan.
- Inspection openings (if present) must be closed.
- If storing the fan for over six months, it will be necessary to remove the old grease and proceed with re-lubrication according to the quantities and types reported on the Technical Data Sheets or in Appendix.
- When fan and/or plenum fan have been stored at temperature lower than normal storage temperature shall be let warming-up gradually and slowly before start-up (see also par. 3.3).

5.2 <u>Test run</u>

The fan and plenum fan should be switched on briefly to verify the direction of rotation of the impeller which should correspond to that indicated by the arrow.

Should the motor run in the wrong direction, swap any two of the three electrical leads. Rotation direction of single phase motors can be swapped

by exchanging internal connections, as described on the motor plate or wiring diagram. Always observe the electrical safety instructions.

5.3 Checking current consumption

Check that the fan / plenum fan operation condition is according the design selection point. Upon reaching the operating speed of the fan, immediately measure the absorbed current and compare it with the rated current indicated on the motor plate. In case of abnormal current consumption, switch off the motor immediately.

5.4 Checking for smooth running

Check the smooth running of the fan. There should be no unusual oscillations or vibrations. Check for unusual noise of the bearings (see par. 6.6).

5.5 Checking V-belt drive

6

After one hour of continuous run, stop the fan and check that belt tensioning is in accordance with par. 6.5 and, if necessary, re-tension the belts; after 3-4 days of operation check the V-belt tension once again.

MAINTENANCE

Operational performance data are indicated on the fan label:

maximum operating temperature, maximum shaft power, maximum rotational speed, and, if required, operating data for the specific application - rated speed, volume, total pressure, rated temperature and absorbed power (See also par. 2.5.5).

For impellers of the NPL, NPL ALU, NPA, NPA ALU, TE, NPE, PEAF plenum fan series, when supplied as loose components, impeller and inlet-cone unit, do not exceed the maximum speed provided in the catalogue of reference.

6.1 Safety information

Before any maintenance operation on the fan, it is necessary to make sure that:

- the motor is disconnected from the power supply
- the impeller is stopped
- the surface temperature be checked to prevent burning
- uncontrolled running of the fan during maintenance shall be

prevented

- no hazardous debris or materials are inside the fan.

Only limited work (e.g. measuring vibrations) may be carried out while the fans are in operating conditions and in compliance with safety and accident prevention regulations.

Failure to comply with these points endangers the life of maintenance personnel.

6.2 Casing and impeller

Even with slightly dusty fluids, wear and filth can also be expected inside the casing and on the impeller (corrosion, abrasions, stuck materials) which can cause vibrations. Inspections and cleaning must be performed regularly. Their frequency must be fixed by the operator according to individual operating conditions. **Do not use high pressure cleaners (steam cleaners).**

6.3 Accessories

Flexible connections between the fan and plenum fan and parts of the installation must be visually inspected regularly and checked that there are not breakages or splits at the flexible cloth and, if present, at the seals / sealing material. Unsealed couplings lead to breakdowns and danger due to leaking fluid and must be replaced.

Make sure that the fan is always accompanied by this manual.

e=380mm (distance between pulleys)

t. from the table

f (test load)=25 N E=2.05mm

 $Ea\cong (2.05\ ^*\ 380)\ /\cong 7.7mm$

Use our fan selection program *Aeolus* to choose the belt. Otherwise refer to technical catalogues.

Belt tension can be checked also with the use of sonic belt tension testers available on the market.

6.5.2 Minimum pulley diameters

The theoretical life L_{10} can only be guaranteed if the diameter of the pulley corresponds to a minimum value, e.g. if the permissible load of the bearings is not exceeded. Always replace damaged/worn pulleys with new ones of the same diameter and type.

6.5.3 Belt replacement

The axle spacing should be reduced until the new belt/s can be easily fitted by hand. Re-tensioning of the belts should be done in accordance with par. 6.5.1.

Replace the whole set of belts.

Observe what prescribed in Chapter 5.5.

Belt manufacturers generally consider an average working life of the belt of 25.000 hours. Taken in account that this life value is theoretical and is affected by the uncertainties due to the actual operating conditions, it is common practice to visually inspect regularly the surface state of the belts and is adviced by manufacturer to perform more frequent checks and eventual substitution of the belts after about 20.000 hours of functioning.

For spark-proof execution, the belt must be elettrostatically conductive.

6.5.4 Taperlock pulley replacement

To release the pulley

- 1. Unscrew the bolts
- 2. Tighten the socket head cap screw in the threaded holes
- 3. Pull the clamping bush out of the tapered hole
- 4. The pulley can now be easily slid off the shaft
- To fix the pulley

1. Insert the pulley and the bush on the shaft and fix them with the

specific screws

Make sure that the two pulleys are properly aligned one to another. Fit and tension the belts according to par. 6.5.1.

Also shaft seal material must be visually inspected regularly and checked that there are not breakages or abrasions due to external factors, otherwise they need replacement.

6.4 Checking rotating parts

Periodically check the alignment of the impeller on the shaft as well as fixing conditions of the bolts. Make sure all the bolts on the fan are tightened. The tightening torques must be according to the prescriptions of

(1)

bolt technical manuals. For bearing bolts the tightening torque values must comply with the bearing manufacturer's catalogue.

6.5 Belt drive

6.5.1 Belt tensioning

Depending on the installation site and type of fan operation, it is recommended to check the belt tension and their alignment regularly.

This is compulsory for Atex spark-proof applications according to EN 14986.

Operate only by means of the motor rails, if present.

Belt displacement E_a (see scheme in fig.1) must be calculated according to the *formula* (1) and the values mentioned in table 1 in the Appendix:

E_a ≅ (E * e) / ₁₀₀

where:

e = distance between shaft centers

E = belt bending for distance between shaft centers of 100mm

Ea = belt bending

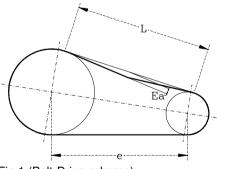


Fig.1 (Belt-Drive scheme)

6.6 <u>Bearings</u>

As all components, the bearings must be checked periodically and cleaned and re-greased if required.

The re-lubrication intervals indicated in Appendix 1 apply to fans with horizontal shaft and temperatures not exceeding +70 °C.

To consider the accelerated ageing of the grease at high temperatures, the re-lubrication intervals shown in the diagram should be cut in half for each 15° C of temperature increase above $+70^{\circ}$ C (the maximum admissible temperature for the grease must in no case be exceeded - see Table in Appendix). For temperatures below $+70^{\circ}$ C, lubrication intervals can be lengthened accordingly (the interval should never be more than doubled and at least once a year – see diagram).

Use type of grease and seals consistent with the type originally supplied, defined as appropriate for the temperature range of functioning.

These must be considered general instructions and must be adapted to each individual application.

The bearings mounted on the fans are of different types according to the fan size and absorbed power.

The base and R-version types are supplied with permanently-greased ball bearings. Together with a correct choice of pulley diameter, these bearings guarantee a life L_{10} of at least 20000 hours at maximum performance (for fans in spark-proof execution Group II, Category 2, a

life L_{10} of 40000 hours is guaranteed, see 2.5.3.3). When changing the bearings, the rubber ring must be changed as well. Maintenance of this type of bearings consists in cleaning the outside surfaces and inspection of possible gasket defects. If the latter is detected, the bearing must be replaced.

The T-version fans are supplied with re-lubricating ball bearings with cast-iron support.

THLZ fans size 1120, HLZ, TZAF T2, TZAF FF T2, NTHZ T2 fans above size 500, TZAF 1250 T1, TZAF 1250 FF T1, NTHZ 1250 T1 fans, MAZ T1, MHZ T1 fans above size 1000, MAZ T2 and MHZ T2 fans, TEAF T2 fans above size 710, NTHE T2 fans above size 710, plenum fans with free impeller NPL, NPA, NPE and PEAF in setting 11 T2 are supplied with ball bearings or rollers with split cast-iron housing. These bearings are re-lubricable and we recommend changing grease fully after 2 re-lubrications.

The amount of grease and re-lubrication intervals depend on the type of bearing and operational rotational speed. They are indicated in the tables and figures in the Appendix. Grease must be introduced through the specific grease nipple after it has been cleaned, turning the shaft slowly during this operation.

The above data (especially the interval), though calculated with a safety factor, is purely theoretical due to uncertainties on the actual operating conditions of the fan.

Therefore Comefri strongly recommends performing periodical controls on the bearings even before the lubrication deadline.

In most cases, any flaws in the bearings can be detected by listening to them. When they work properly, they generate a smooth and uniform sound. A loud and squeaking noise or any other abnormal sounds imply that the bearings are worn out. A squeaking noise may

also be caused by insufficient lubrication. Too small bearing cross-gap can cause a metallic noise. Dents on the outer track of the bearing can cause vibrations which in turn cause a clear sound. Intermittent sounds imply a defective rolling surface. High temperatures of the bearing are a sign that it is working abnormally. High temperatures are harmful to the grease and the bearing itself. High temperatures could be caused by insufficient or excessive lubrication, impurities in the grease, overloading, damage or insufficient bearing cross-gap. Even a slight temperature variation can be a sign of impaired operation if the operating conditions have not changed. Refilling the bearing with grease will cause its temperature to rise for a couple of days. Check the grease. If the grease changes color or darkens it is usually a sign that it contains impurities. The grease must be changed after the bearing has been re-lubricated a number of times or if the grease is caked, darkened or faded (compared to its original color).

6.6.1 <u>Replacing bearings</u>

The tightening torques must respect the values provided in the bearing manufacturer's manual. The same rules apply for all bolts on the fan according to the prescriptions of technical manuals.

6.6.1.1 Replacing bearings on bearing-brackets

1. Loosen the grain and remove the locking ring from the bearings using a punch and hammer. Use an appropriate tool to hold the shaft to keep from damaging the impeller and inlet-cone.

2. Remove the bearing-brackets from the side plates of the fan and extract them from the shaft. Replace the bearings and rubber rings. Mount new bearings on the bearing-brackets.

3. Mount the bearing-brackets on the side-plates making sure to centre the impeller on the inlet-cone. Fix the bearing-brackets on the side-plates and tighten the bolts. Screw and tighten the locking rings on the bearings. Then tighten the grains on the locking rings. Turn the impeller to check correct rotation and to detect any malfunctioning of the bearing or rotary parts.

6.6.1.2 Replacing bearings on cast-iron pillow blocks:

1. Loosen the grains and remove the locking rings from the bearings using a punch and hammer. Remove the pins from the cast-iron pillow block and loosen the bolts. Remove cast-iron pillow blocks from the shaft. Use an appropriate tool to hold the shaft to keep from damaging the impeller and inlet-cone.

2. Replace the bearings.

3. Position the cast-iron pillow blocks on the frames, insert the bolts without tighting them. If present in the substituited bearing, put the elastic pin (normally elastic pin is provided from size 500 and above). Make sure to centre the impeller on the inlet cone, adjusting the inlet-cone. Fix the cast-iron pillow blocks to the frames by tightening the bolts. Screw and

tighten the locking rings on the bearings. Then tighten the grains on the locking rings. Turn the impeller to check correct rotation and to detect any malfunctioning of the bearings or rotary parts and verify the centering between impeller and inlet-cone. NOTE: in ATEX execution elastic pins are always necessary.

6.6.1.3 Replacing bearings on SKF split cast-iron pillow block SNL / SE:

1. Disassemble all accessories mounted on the shaft which can get in the way of bearing replacement. Unscrew the cap of the bearing housing by loosening the bolts on both sides. Use an appropriate tool to hold the shaft to keep from damaging the impeller and inlet-cone.

2. Remove the locking rings from the bearing side (note that only one bearing is equipped with locking rings) and the half sealing rings from the base and cap part of the bearing housing after having cleaned the grease.

3. Lift the safety tab folded from the groove of the nut; unscrew the nut using punch and hammer; remove the old bearing; install the new bearing; tighten the nut on the threaded bush until a consistent resistance; run the final tightening of the nut making with the proper key, or by acting on the grooves, the relative angle of torque provided by the manufacturer of the bearings verifying then, with the use of a feeler gauge, the final radial internal clearance, which must be compliant as indicated by the manufacturer; then bend one of the locking washer tabs down into one of the slots in the nut. Do not bend it to the bottom of the slot. (for detailed specifications / parameters and operational instructions regarding the assembly / disassembly of bearings, refer to the technical publications of its constructors)

4. Mount the new seal ring in the grooves on the base of the bearing housing. Grease the seal ring and arrange the greased shaft/bearing group on the base. Mount one or more locking rings on one bearing only (the other bearing will not be locked). Insert the other seal ring, with the lips already greased, inside the cap of the bearing housing. Grease the whole group taking care to fill the available space one third with grease. Fill the bearing with proper type and quantity of grease as indicated in the Appendix.

Install the cap onto the base and tighten the cap bolts to the torque specified by bearing manufacturer. Turn the impeller to check correct rotation and to detect any malfunctioning of the bearings or rotary parts.

Please note that an excessive amount of grease can cause a temperature peak in the bearing, which in turn can damage the lubrication properties of the grease and lead to bearing damage.

6.7 Replacing the motor and impeller in Plenum Fans

Disconnect the electric cables from mains;
disjoin the plenum fan from the unit before the motor can be replaced;

- disassemble the plenum fan from the unit (including the anti-vibration dampers, if installed);

- unbolt the motor from its support and unbolt the locking screw at the motor shaft and the safe grub screw at the hub key;

- for wheels made of steel: if wheels are provided with two nuts welded on

the back-plate in correspondence with two opposite holes of the fixing hub-wheel, apply to these nuts the hub puller (extractor) to push the impeller off the shaft; If wheel does not have the welded nuts, unscrew two opposite screw and pass the threaded bars of the hub puller through the holes.

Wheels made of aluminum are usually taken off by hand and therefore there are no nuts on the back-plate;

- the motor can be moved backwards if needed, being careful that it does not drop;

- mount a new motor on the support without tightening it;

- mount the fan impeller on the motor shaft (clean the shaft and the interior of the hub if necessary);

- tighten the support bars (when provided on the plenum fans);

- fix the impeller to the motor, align it assuring the overlapping between the impeller and the inlet-cone is according to the technical catalogue and that the radial clearance is evenly distributed along the circumference;

- tighten the motor to its support and check the gap between impeller and inlet-cone is correct.

In case of special execution with a taper-bushed connection, after the installation must be done the "Running Test" with the vibration analysis.

6.8 Spark-proof execution according to ATEX 2014/34/EU for Fans and Plenum Fans

This paragraph underlines and further details maintenance prescriptions of particular importance for fans and plenum fans intended for use in potentially explosive atmospheres according to the ATEX Directive 2014/34/EU.

Prescriptions are exposed here in form of check list to sum-up the relevant actions to carry out and the main components and devices to keep under control to guarantee a correct functioning anti-explosion safe. Every item is explained and detailed in its specific relevant paragraph of this handbook.

The anti-explosion safe is guaranteed by the constructional measures of type "c" provided a correct maintenance is carried out.

It is not allowed to perform installation and maintenance actions not foreseen in the present manual. Every improper modification could prejudice besides the Atex compliance also the safety.

For additional items / accessories installed at the fan / plenum fan refer to maintenance prescriptions of the relevant Operating Manuals.

The ATEX Directive 2014/34/EU prescribes the use of a logbook where to define the maintenance intervals and where to record maintenance and replacement interventions. All measurements must be recorded and compared with previous measurements. Any sudden change of the values of any parameters must be regarded as a sign of danger and requires more specific controls.

It should be defined a periodical program of checks on significant components and measurements of the significant parameters (ex. vibrations). The frequency of interventions shall be fixed in dependence of the operating conditions of the specific application. A general rule suggests to begin with a higher frequency at the start-up of the plant and to refine it in function of the feedback of the results obtained.

<u>Pay attention</u>: after maintenance or after restoring of any type of malfunctioning that can affect the positioning of the impeller, **check the minimum value of the clearance between Inlet-cone and Shroud** (see 4.5) and the correct centering of the impeller.

- Visual and acoustic inspections

- blade inspection for damage (which can cause unbalance)
- integrity of painting and protective coatings. See par. 2.5.3.1 for painting requirements if paint repairing are necessary (Paints without aluminum and without iron oxides)
- ▶ integrity of inlet and/or outlet guards and respective fixing
- integrity of flexible inlet and/or outlet joints and respective fixing
- ▶ integrity of sealing at the inlet, outlet flanges and at the inspection door
- integrity of shaft seals
- bearing seals to prevent grease leakage
- monitoring the noise level can be a way of assessing proper operation of the fan for example as to detect unbalance, to check bearing functioning (see par. 6.6)

- Check correct functioning

Control that rotational speed is as design operational condition;

controll the correct motor power absorption;

check there are no anomalous vibrations;

check critical surface temperature, such as motor and bearing surface temperature;

check that operational condition (airflow – pressure) is as required and that it shall NOT be outside the Catalogue rating field or in "Area 1" (for fans / plenum fans with Catalogue field divided in different Areas).

- Bearings

Lubrication: see par. 6.6.

When the sufficient level of grease cannot be assured while servicing the bearing, the

temperature of the bearing must be monitored as required in clause 5.7.2 of the standard ISO 80079-37.

A temporary increase of temperature at the start-up followed by a subsequent decrease during steady functioning is normally expected. Therefore correct temperature must be measured at steady condition.

<u>Bearing Vibration</u>. Beyond the defined maintenance program on bearings, vibrations on bearing shall be kept under control as it is a prediction of malfunctioning to be checked. <u>Pins</u>. In replacing bearings of the type cast-iron pillow blocks do not forget to reinstall the pins, see par. 6.6.1.2.

- Bolt Tightening Torques (see par. 6.4)

- Impeller-Shaft attachment

Check that screws fixing hub to shaft (grub screw, tapped shaft-end screw, stop bushing screws) are properly tightened.

- Belt-transmission control

See par. 6.5. for belt and pulley maintenance and see "Power drive" at par. 4.5 for belt-transmission requirements in Atex application.

In particular pay attention:

- slippage of belts and pulley misalignment can cause overheating (see par. 6.5.1 for tensioning and 6.5.3 for belt replacement);

- belts shall be of electrically conductive type;
- in ATEX application belt speed shall be limited to 30 m/s.
- Cleaning of Casing and impeller

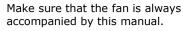
In all applications where dust can be expected to form layers on surfaces of the fan and/or plenum fan, regular cleaning must be carried out at appropriate intervals, fixed by the operator according to individual operating conditions (see par. 6.2).

Fans in Atex execution are provided with inspection door and drain plug.

- Clearance between the Inlet-cone and Shroud

After maintenance or after restoring of any type of malfunctioning that can affect the clearance, check the minimum value of the clearance between Inlet-cone and Shroud (see par. 4.5) and the correct centering of the impeller.

In dependence of operational conditions a program of clearance checking can be included in the maintenance activity.


For fans and plenum fans in Category 2 the clearance-check must be performed for the entire operating life.

- Check the correct electrical resistence of the earthing system of fan / plenum fan.

- Motor maintenance according to manufacturer's prescriptions.

- Motor Replacement

If damaged, motor can be substituted by the customer and/or user maintaining the Comefri

comefri[°]

Operating and Maintenance Manual - Air Conditioning Division

7

Atex certification provided that:

▶ new motor complies and is certified to the same Atex application scope (Atex Group and Category, surface temperature class etc.) as the one substituted;

- ► the motor mounting complies with manufacturer's prescriptions and respects instructions of this handbook (as motor fixing, pulley and belts mounting, transmission guard requirements, etc.)
- ► motor replacement intervention is recorded in the logbook

▶ if motor rails are galvanized or are in stainless steel (i.e. if not protected by painting), lay a coat of insulating/sealant plastic to prevent electrolytic corrosion.

TROUBLESHOOTING

Problem	Cause	Corrective action
	Impeller rubs against inlet-cone or casing	Adjust impeller and/or inlet-cone Tighten hub of impeller or bearing collars on shaft
Excessive	Power drive	Tighten pulleys on motor/fan shaft Adjust belt tension Align pulleys properly Replace worn belts and pulleys
noise	Bearings	Replace defective bearings Lubricate bearings Tighten collars and fasteners
	Impeller unbalance	Clean filth from impeller Check impeller balancing Rebalance and other on-site if necessary
Low airflow	Fan	Check correct rotation of impeller Check for inlet and outlet obstructions Increase fan speed
	Circuit	Check circuit loss calculations
	Fan	Decrease fan speed
High airflow	Circuit	Resize ductwork Inspection door, grids and filters not installed
Incorrect static pressure	The circuit has more or less obstructions than expected	Change obstructions in system. Use correction factors to adjust temperature/position Resize ductwork Clean filters/coils
	Fan	Check correct rotation of impeller Decrease fan speed
High absorption	Circuit	Resize ductwork Check proper functioning of dampers, coils and bypass Check filters and inspection doors
The fan does	Electrical supply	Check fuses/circuit breakers Make sure circuit is connected Check correct power supply voltage
not work	Power drive	Check for broken belts Tighten slack pulleys
	Motor	Make sure the motor has necessary horsepower and does not trip overload protectors
Quarkested	Lubrication	Make sure there is neither too much nor too little grease in bearings.
Overheated bearings	Mechanical causes	Replace damaged bearings Loosen excessive belt tension Align bearings Make sure shaft is straight

MANUFACTURER'S DECLARATIONS

We hereby declare that the following machinery or partly completed machinery or parts of machinery are built to be assembled with other machinery, partly completed machinery or parts of machinery to make up one unit.

The final unit will not be put into service until it has been declared in conformity with the provisions of the machinery directive 2006/42/EC.

It is not allowed to put the fan, referred to in this declaration, into service before it is in conformity, on-site, with the Directive 2006/42/EC.

For example, "plenum" fans do not meet CE labelling requirements (i.e they have an impeller without guards). The fan must nevertheless be installed in accordance with CE requirements.

> CENTRIFUGAL FANS FOR BELT DRIVE OR DIRECT DRIVE (object of declarations)

Туре	Size	Туре	Size
TZAF FF	315 - 1250	THLE	200 - 1000
VTZ	315 - 1000	TEAF	315 - 1000
NTHZ	315 - 1250	NTHE	200 – 1000
THLZ FF	180 - 450	THE	200 – 280
MAZ	315 - 1250	KHLE *	200 - 1000
MHZ	315 - 1250	NPL	250 - 1400
TLZ	160 - 1000	NPL ALU	200 - 500
TLI	7/7 – 18/18	NPA	315 - 1600
TZAF	355 - 1250	NPA ALU	250 - 710
THLZ	180 – 1250	TE	180 - 450
HLZ	400 – 1250	PEAF	315 - 1600
TLE	200 - 1000	NPE	315 - 1400

KHLE series is as THLE series with rectangular shaped casing

Pertinent EC directives applied	Machinery directive 2006/42/EC and subsequent amendments
Harmonized standards applied ¹⁾	EN ISO 12100, EN ISO 13857, ISO 281, EN ISO 12499, ISO 1813, EN 60529, ISO 80079-36, ISO 80079-37, EN 14986, CEI EN 60079-0, CEI EN 60079-11, CEI EN 60079-15.
National standards and technical specifications ²⁾ applied, in particular	ISO 21940-11 or VDI 2060, ISO 20816-1, ISO 10816-3, ISO 14694, ISO 5801, AMCA 210 fig.14, ISO 5136 / DIN 45635-38.

1) For the complete list of standards and technical specifications, see the manufacturer's documentation.

2) The technical specifications are used if no relevant harmonized standards exist.

DICHIARAZIONE DI CONFORMITA' (Direttiva Macchine 2006/42/CE allegato II/A) DECLARATION OF CONFORMITY (Machinery Directive 2006/42/EC annex II/A)

IL FABBRICANTE / THE MANUFACTURER

Nome Azienda / Company Name:	Co.me.fri. S.p.A.
Indirizzo / Address:	via Buia, 3 - 33010 Magnano in Riviera - Udine - Italy
Telefono / Telephone:	0432 / 798811
Fax:	0432 / 783378
E-mail:	comefri@comefri.com
Internet Web site:	www.comefri.com

E' CONFORME A QUANTO PRESCRITTO DALLA DIRETTIVA MACCHINE 2006/42/CE IS IN ACCORDING TO THE MACHINERY DIRECTIVE 2006/42/EC

Norme armonizzate applicate: Applied harmonised standards:	UNI EN ISO 12100, UNI EN ISO 13857, UNI EN ISO 12499, UNI EN 14986, CEI EN 60079-0, CEI EN 60079-11, CEI EN 60079-15
Norme nazionali, specificazioni tecniche, raccomandazioni ufficiali, applicate ¹⁾ : Applied national standards and technical specifications ¹⁾ :	UNI EN ISO 5801 - Per le caratteristiche di funzionamento / For operating characteristic UNI EN ISO 5136 / DIN 45635-38 - Per il livello di potenza sonora / For sound power levels UNI ISO 21940-11 or VDI 2060 - Per l'equilibratura / For balancing UNI ISO 20816-1,UNI ISO 10816-3, ISO 14694 - Per le vibrazioni / For vibrations
Ulteriori conformità alle Direttive: Further conformity to Directives:	2014/30/UE Compatibilità elettromagnetica / electromagnetic compatibility 2014/35/UE Bassa tensione / Low Voltage 2011/05/UE Restrizione dell'uso di determinate sostanze pericolose nelle app. elettriche ed elettroniche Restrizion of Hazardous Substances Directive (RoHS)
Sistema di Qualità certificato: Total Quality Approval System:	ISO 9001 certificato BSI FM 01403

1) For the complete list of applied standards and technical specifications see the manufacturer's documentation

Si dichiara inoltre che il relativo FASCICOLO TECNICO è costituito e custodito dalla Co.me.fri. S.p.A. We also declare that the TECHNICAL FILE is compiled and secured by Co.me.fri. S.p.A.

Posizione del firmatario: Position of Signatory:	
Data / Firma: Date / Signature of manufacturer:	
Documentazione ricercabile: File under:	Originale presso il costruttore; Copia resa conforme all'originale inviata al cliente The original shall be kept by the manufacturer; The certified true copy is for the customer

Data / Date Compilato da / Compiled by : fans of energy saving CE incorporation - AQ 0xx Rev. Dic.2017 Prep. / Verif. / Appr. R&S dep DICHIABAZIONE DECLARATION **DI INCORPORAZIONE** OF INCORPORATION (Direttiva Macchine 2006/42/CE allegato II/B) (Machinery Directive 2006/42/EC annex II/B) Co.me.fri. S.p.A. Nome Azienda / Company Name. Il Fabbricante: via Buia. 3 - 33010 Magnano in Riviera - Udine - Italv Indirizzo / Address: Telefono / Telephone 0432 / 798811 Fax: 0432 / 783378 The Manufacturer. F-mail comefri@comefri.com Internet Web site: www.comefri.com Descrizione / Description: Ventilatore Centrifugo / Centrifugal Fan Dichiara che la Modello / Fan Type: QUASI-MACCHINA Codice / code N° Serie / Product n Declare that the Anno costruzione / Manufactured year INCOMPLETE-MACHINE: N° commessa / N° order Costruita nelle sedi di: MAGNANO in RIVIERA (UD) 33010 - Via Bua,3 ARTEGNA (UD) 3391 - Via Buia.2 Manufactured in E' CONFORME AI REQUISITI ESSENZIAL DELLA DIRATIVA MACCHINE 2006/42/CE IS IN ACCORDING WITH THE ESSENTIAL REQUIREMENTS OF THE MACHINERY DIRECTIVE 2006/42/EC In particolare 1. 2 1. 3 ; 1. 5 1.3.1 ; 1.3.2 ; 1.5.7 ; 1.5.8 ; 1.5.9 ; 1.7.4.3 (allegato II / annex II) In particula UNIEN ISO 12100, UNIEN ISO 13857, UNI EN ISO 12499, UNI EN 14986. CEI EN 60079-0. Norme armonizzate applicate CEI EN 60079-11-CEI EN 60079-15 Applied harmonised standards Norme nazionali, specificazioni UN EN ISO 5801 - Per le caratteristiche di funzionamento / For operating characteristic tecniche, raccomandazioni ufficiali, applicate1): UNI EN ISO 5136 / DIN 45635-38 - Per il livello di potenza sonora / For sound power levels Applied national standards and UNI ISO 21940-11 or VDI 2060 - Per l'equilibratura / For balancing technical UNI ISO 20816-1 / UNI ISO 10816-3, ISO 14694 - Per le vibrazioni / For vibrations specifications¹ (Se del caso / Where appropriate) 2014/30/UE - Compatibilità elettromagnetica / electromagnetic compatibility Ulteriori conformità alle Direttive: 2014/35/UE - Bassa tensione / Low Voltage Further conformity to Directives: 2011/65/UE - Restrizione dell'uso di determinate sostanze pericolose / RoHS Sistema di Qualità certificato: ISO 9001 certificato BSI FM 01403 Total Quality Approval System: 1) Per l'elenco completo delle norme e delle specifiche tecniche fare riferimento alla documentazione mantenuta dal costruttore 1) For the complete list of applied standards and technical specifications see the manufacturer's documentation Si dichiara inoltre che / We also declare that:

- La relativa DOCUMENTAZIONE TECNICA PERTINENTE, in conformità all'allegato VIIB, è costituita e custodita dalla Co.me.fri. S.p.A.
- The TECHNICAL DOCUMENTATION, according to annex VIIB, is compiled and secured by Co.me.fri. S.p.A. • La Co.me.fri. S.p.A. si impegna a trasmettere, a seguito di una richiesta adeguatamente motivata dalle autorità nazionali, informazioni su queste quasi-macchine. L'impegno è relativo alle modalità di trasmissione e lascia impregiudicati i diritti di proprietà intellettuale del fabbricante.
- ^a Co.me, fri, S.p.A undertakes to provide, following a reasoned request by national authorities, informations about these incomplete-machines. The commitment is also on mode of trasmission and does not affect on intellectual property rights of the manufaturer.
- la quasi materina on deve essere messa in servizio finché la macchina finale in cui deve essere incorporata non sia stata dichiarata conforme alle disposizioni della direttiva macchine 2006/42/CE.
- The incomplete-machine must not be put into service until the final machinery, which is to be incorporated, has been declared in conformity with the machinery directive 2006/42/EC.

Posizione del firmatario: Position of Signatory:

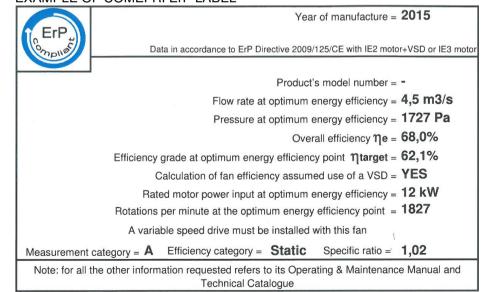
Amministratore Delegato / Managing Director

gg/mm/aaaa - Ing. R.Braun

Data / Firma: Date / Signature of manufacturer:

Documentazione ricercabile:	Originale presso il costruttore; Copia resa conforme all'originale inviata al cliente
File under:	The original shall be kept by the manufacturer; The certified true copy is for the customer

'ErP' SPECIFICATIONS


From the 1st January 2013 every fan and plenum fan placed on the market or put into service inside the EU must comply with 'Erp' Directive 2009/125/EC and relevant implementing Regulation (EU) N° 327/2011.

Through the algorithms of calculation prescribed by Regulation (EU) N° 327/2011 in reference to the different types of fans in different configurations as they are supplied, it is compulsory that the so calculated overall efficiency is equal or greater than a minimal calculated efficiency (target efficiency) in order to let the fan comply with the 'ErP' Directive and can be placed on the market or put into service inside the EU market and/or EC labeled.

Regulation (EU) N° 327/2011 prescribes two steps to enter into force, the first within the 1st January 2013 and the 2nd within the 1st January 2015, the latter with target efficiencies greater than those of the first step

From the 1st January 2013 on every Comefri fan and plenum fan is sticked a 'ErP' label that lists clearly product data and informations required by Regulation (EU) N° 327/2011 and states the conformity of the product with 'ErP' Directive.

EXAMPLE OF COMEFRI ErP LABEL

LOGO 'ErP compliant'

It states that the fan or free wheel complies with the 'ErP' Directive (Regulation (EU) N° 327/2011) and therefore it can be EC labeled, in case of need, in its final installation 'on site'.

Year of manufacture:

Year of production/placement on the market

Product's model number:

Fan type code

Flow rate at optimum energy efficiency:

Volumetric airflow at the point of optimal energy efficiency at the rotational speed indicated in the following relevant field

Pressure at optimum energy efficiency:

Pressure at the point of optimal energy efficiency at the rotational speed indicated in the following relevant field

Overall efficiency ne:

Overall efficiency calculated according to Regulation (EU) N° 327/2011

Efficiency grade at optimum energy efficiency point [ntarget]:

Efficiency grade calculated at the point of optimal energy efficiency

Calculation of fan efficiency assumed use of a VSD:

It indicates if the overall efficiency calculation (ηe) presupposes or do not presuppose the use of a variable speed drive, it can be alternatively: NO, YES, YES* (see 'variable caption' in the following)

Rated motor power input at optimum energy efficiency:

Electric power absorbed at the mains at the point of optimal energy efficiency

Rotations per minute at the optimum energy efficiency point:

Rotational speed at which the overall efficiency and the target efficiency are calculated:

- Catalogue maximal rotational speed for fans put on the market as 'not final assembly'

- Rotational speed of functioning/selection for fans put on the market as 'final assembly'

A variable speed drive must be installed with this fan:

Variable caption that means the criterion for conformity in the final assembly "on-site" and that can be alternatively:

- a high-efficiency drive must be installed with this fan
- a variable speed drive must be installed with this fan
- a variable speed drive is integrated with the fan

Measurement category:

Installation category (A-B-C-D) taken into consideration for the calculation of the overall efficiency

Efficiency category:

It indicates if the calculated overall efficiency is Static or Total

Specific ratio:

The 'specific ratio' means the stagnation pressure measured at the fan outlet divided by the stagnation pressure at the fan inlet at the optimal energy efficiency point of the fan.

10 SPARE PARTS

Only original Comefri spare parts can be used according to the spare parts list. Comefri will not be held liable for damage resulting from use of other spare parts.

Appropriate spare parts can be requested from COMEFRI SÉRVICE, indicating the manufacturing number and fan number when placing the order. To be able to identify the spare parts you are requesting and to supply them as soon as possible, it would be helpful to report also the data on the drawing related to your fan. The components of the drive units, such as pulleys, bushes, V-belts and bearings are normally available on the market and the manufacturers are highlighted by Comefri. The user can order spare parts directly from the original manufacturer. However our Assistance Service is always available to supply parts directly from our stock. The routine maintenance operations indicated above can be performed without the intervention of Comefri personnel. When replacing parts, follow the precise instructions provided by the manufacturer. For heavy-duty applications or when a machine stoppage time for repairs would entail large costs for your business, Comefri suggests keeping the following spare parts available on stock:

- impeller
- shaft
- bearing block set or single block (if applicable).
- bearing set
- pulleys
- V-belts set.
- couplings (if applicable)

The list of special spare parts for industrial applications is available at Comefri on demand.

Note: when requesting spare parts or information, always provide the type of model and serial number of the unit.

PLACING OUT OF SERVICE AND SCRAPPING

- disconnect the electric cables from the motor terminal board.

- remove the fan from the site, paying the upmost attention to all parts which can be a source of danger (especially free

rotating parts).

if the fan is without a drive guard, remove the belts (potential sources of dragging danger).

Do not release waste into the environment!

Proceed with differentiated separation of materials such as:

- electrical components
- lubricating fluids
- materials (copper, steel, plastic, etc)

in compliance with standards or procedures in force in the relative Country.

12 RESIDUAL RISKS

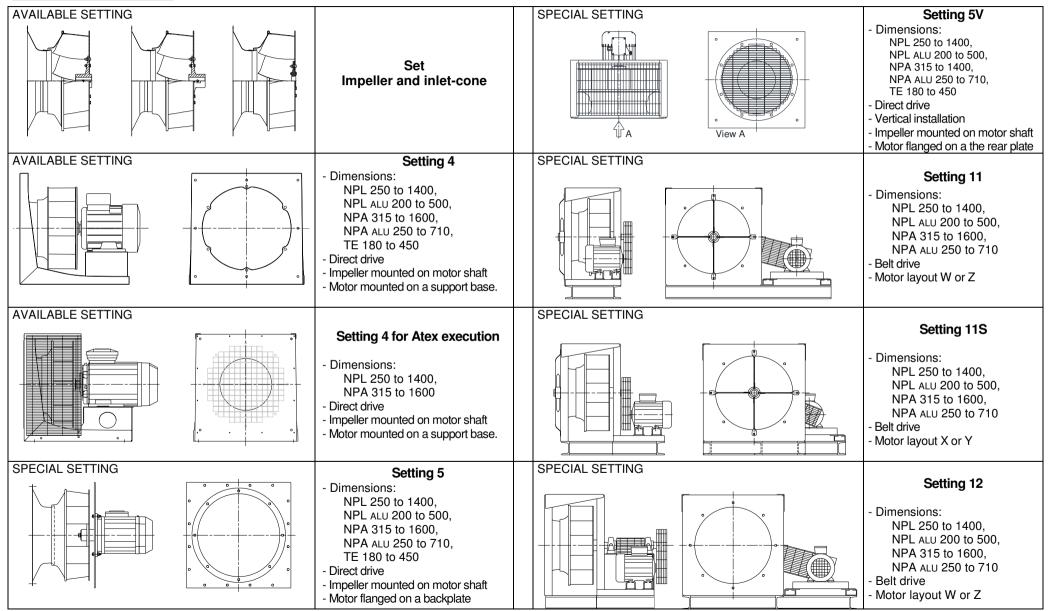
- ^o Comefri fans have been designed and developed in compliance with design criteria defined by standards UNI EN ISO 12100.
- Safety protections (guards) have been designed and developed in compliance with design criteria defined by standards UNI EN ISO 12100, in conformity with standards ISO 13857 requirements.
- The Comefri ISO 9001 certification guarantees the systematic application of all the procedures foreseen in the entire production process.

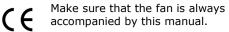
These conditions guarantee the absence of dangers of a mechanical nature. However, some "residual risks" still exist (highlighted by the relative symbols in the various chapters of this manual) which, according to the "risk assessment" carried out, do not constitute a personal danger if the fan is approached:

- by specialised and qualified personnel
- ° in compliance with the procedures indicated in this manual
- ° wearing and using suitable PPE during each operation

The main RESIDUAL RISKS are:

RESIDUAL RISK	RISK REDUCTION
Sharp edges	Use of suitable PPE: gloves, goggles, helmets
Moving parts (impeller and/or transmission devices)	Use of suitable PPE: gloves, goggles, shoes, overalls. Compliance with procedures
Relevant sound emissions	Use of suitable PPE: earmuffs
Possible high temperatures of components	Use of suitable PPE: gloves
Possible projection of small "foreign bodies" or dust in treated fluid	Use of suitable PPE: gloves, shoes, overalls, goggles, mask
Presence of electrical voltage	Use of suitable PPE: Compliance with procedures
(if relevant) Possible leakage of hazardous gases/vapours	Use of suitable PPE: gloves, shoes, overalls, goggles, mask





APPENDIX

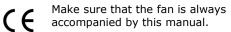
Settings for Plenum Fans (figures from reference catalogue)

Belt type	Test load for each belt f (N)	Smaller pulley diameter d_k	Belt bending for distance between	
		(mm)	shaft centres of 100mm E (mm)	
		56 ≤ 71	2,45	
SPZ	25	< 71 ≤ 90	2,20	
362	25	< 90 ≤ 125	2,05	
		125	1,90	
		71 ≤ 100	3,20	
SPA	50	< 100 ≤ 140	2,75	
JFA		< 140 ≤ 200	2,55	
		< 200	2,45	
		112 ≤ 160	3,00	
SPB	75	< 160 ≤ 224	2,55	
JFD		< 224 ≤ 355	2,22	
		< 355	2,10	
		180 ≤ 250	2,55	
SPC	125	< 250 ≤ 355	2,20	
370	125	< 355 ≤ 560	2,00	
		< 560	1,90	

Table 1 Belt transmission

Tables 2 - Types of Bearings

General note relevant to SKF split bearing blocks.


SKF split bearing blocks listed in the table here aside have been labeled "SE" in the past, but with full interchangeability between the corresponding "SNL" codes.

"SNL" code	"SE" code
SNL 507-606	SE 507-606
SNL 508-607	SE 508-607
SNL 509	SE 509
SNL 510-608	SE 510-608
SNL 511-609	SE 511-609
SNL 513-611	SE 513-611

Table 2.1 - THLZ FF B / R, TLZ B / R, TLI B / R, THLZ B / R, TLE B / R, THLE B / R, TEAF B / R, NTHE B / R, THE B / R

			SKF			NTN			
Fan size	Bore (mm)	Unit	Rubber ring	Bearing	Unit	Rubber ring	Bearing	Unit (with rubber ring)	Bearing
160, 180, 200, 225, 250, 7-7, 9-7, 9-9, 10-8, 10-10	20	RABR-B 20/52	RABR 47/52	RAE 20 NPPB	CYS 20 FM	RIS 204	YET 204	AELR204W3	AEL204W3
280, 315, 12-9, 12-12, 15- 11, 15-15, 18-13, 18-18	25	RABR-B 25/62	RABR 52/62	RAE 25 NPPB	CYS 25 FM	RIS 205	YET 205	AELR205W3	AEL205W3
355, 400	30	RABR-B 30/72	RABR 62/72	RAE 30 NPPB	CYS 30 FM	RIS 206 A	YET 206	AELR206W3	AEL206W3
450, 500	35	RABR-B 35/80	RABR 72/80	RAE 35 NPPB	CYS 35 FM	RIS 207 A	YET 207	AELR207W3	AEL207W3
560, 630	40	RABR-B 40/85	RABR 80/85	RAE 40 NPPB	CYS 40 FM	RIS 208 A	YET 208	AELR208W3	AEL208W3
710	50	RABR-B 50/100	RABR 90/100	RAE 50 NPPB	CYS 50 FM	RIS 210 A	YET 210	AELR210D1W3	AEL210D1W3

Table 2.2 - THLZ FF T1, TLZ T, TLI T, THLZ T, TLE T, THLE T, TEAF T1 / T1G, NTHE T1 / T1G, THE T1 / T1G

			INA			SKF			NTN		
Fan size	Bore	Unit	Non-split	Bearing	Unit	Non-split	Bearing	Unit	Non-split	Bearing	
	(mm)		bearing block			bearing block			bearing block		
160, 180, 200, 225, 250, 7-7, 9-7, 9-9	20	PASE 20 N	GG ASE 04 N	GRAE 20 NPPB	SY 20 FM	SY 504 M	YET 204	M-AELP204D1W3	P204D1	M-AEL204D1W3	
280, 315, 10-8, 10-10	25	PASE 25 N	GG ASE 05 N	GRAE 25 NPPB	SY 25 FM	SY 505 M	YET 205	M-AELP205D1W3	P205D1	M-AEL205D1W3	
355, 400, 12-9, 12-12, 15-11, 15-15	30	PASE 30 N	GG ASE 06 N	GRAE 30 NPPB	SY 30 FM	SY 506 M	YET 206	M-AELP206D1W3	P206D1	M-AEL206D1W3	
450, 500, 18-13, 18-18	35	PASE 35 N	GG ASE 07 N	GRAE 35 NPPB	SY 35 FM	SY 507 M	YET 207	M-AELP207D1W3	P207D1	M-AEL207D1W3	
560, 630	40	PASE 40 N	GG ASE/AK 08 N	GRAE 40 NPPB	SY 40 FM	SY 508 M	YET 208	M-AELP208D1W3	P208D1	M-AEL208D1W3	
710, 800	50	PASE 50 N	GG ASE 10 N	GRAE 50 NPPB	SY 50 FM	SY 510 M	YET 210	M-AELP210D1W3	P210D1	M-AEL210D1W3	
900, 1000	60	PASE 60 N	GG ASE 12 N	GRAE 60 NPPB	-	-	-	M-AELP212D1W3	P212D1	M-AEL212D1W3	

Table 2.3 - THLZ T

Fan size	Bore	Split bearing block	Bearing	Locking ring	Bush	Sealing ring	
	(mm)						
1120, 1250	70	SNL 516-613	* 22216 EK	FRB 12.5/140	H 316	TSN 516 L	
* Boller bearing							

Roller bearing

Table 2.4 - TEAF T2L, NTHE T2L

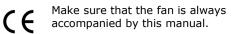

		INA				SKF		NTN			
Fan size	Bore (mm)	Unit	Non-split bearing block	Bearing				Unit	Non-split bearing block	Bearing	
400	30	RSAO 30	GG SAO 06	GNE 30 KRRB							
450, 500	35	RSAO 35	GG SAO 07	GNE 35 KRRB							
560, 630	40	RSAO 40	GG SAO 08	GNE 40 KRRB							
710, 800	50	RSAO 50	GG SAO 10	GNE 50 KRRB				UELP310D1W3	P310D1	UEL310D1W3	
900, 1000	60	RSAO 60	GG SAO 12	GNE 60 KRRB				UELP312D1W3	P312D1	UEL312D1W3	

Table 2.5 - TEAF T2, NTHE T2

				SKF		
Fan size	Bore	Split bearing	Bearing	Locking ring	Bush	Sealing ring
	(mm)	block	-			
800	50	SNL 511-609 1)	* 22211 EK	FRB 9.5/100	H 311	TSN 511 L
900, 1000	60	SNL 513-611 ²⁾	* 22213 EK	FRB 10/120	H 313	TSN 513 L

* Roller bearing; 1) Previous code: SE 511-609; 2) Previous code: SE 513-611

Table 2.6 - HLZ B / R	
-----------------------	--

		ł	HLZ - R versior INA	١	ŀ	ILZ - R version	HLZ - R version NTN		
Fan size	Bore (mm)	Unit	Rubber ring	Bearing	Unit	Rubber ring	Bearing	Unit (with rubber ring)	Bearing
400	35	RABR-B 35/80	RABR 72/80	RAE 35 NPPB	CYS 35 FM	RIS 207	YET 207	AELR207W3	AEL207W3
450, 500	40	RABR-B 40/85	RABR 80/85	RAE 40 NPPB	CYS 40 FM	RIS 208	YET 208	AELR208W3	AEL208W3

Table 2.7 - HLZ T

			INA			SKF		NTN			
Bore (mm)	Unit	Non-	-split bearing block	Bearing	Unit	Non-split bearing block	Bearing	Unit	Non-split bearing block	Bearing	
35	PASE 35 N	GG	ASE 07 N	GRAE 35 NPPB	SY 35 FM	SY 507 M	YET 207	M-AELP207D1W3	P207D1	M-AEL207D1W3	
40	PASE 40 N	GG ASE/AK 08 N		GRAE 40 NPPB	SY 40 FM	SY 508 M	YET 208	M-AELP208D1W3	P208D1	M-AEL208D1W3	
				SKF							
Bore (mm)			Bearing	Locking ring	Βι	ısh	Sealing ring				
50	SNL 513-611 ¹⁾		1311 EK	FRB 11/120 H		H 311 TS					
60	SNL 516-613		1313 EK	FRB 12.5/140	HS	313	TSN 613 L				
60	SNL 516-613		2313 K	FRB 5/140	H 2	313	TSN 613 L				
80	SNL 518-61	5	* 22218 EK	FRB 12.5/160	H	318	TSN 518 L				
	(mm) 35 40 Bore (mm) 50 60 60	(mm) 35 PASE 35 N 40 PASE 40 N Bore Split bearing b (mm) 50 SNL 513-61 60 SNL 516-61 60 SNL 516-61	(mm) Office 35 PASE 35 N GG 40 PASE 40 N GG A Bore Split bearing block GG (mm) 50 SNL 513-611 ¹⁾ 60 SNL 516-613 60	Bore (mm) Unit Non-split bearing block 35 PASE 35 N GG ASE 07 N 40 PASE 40 N GG ASE/AK 08 N Bore (mm) Split bearing block Bearing 50 SNL 513-611 ¹⁾ 1311 EK 60 SNL 516-613 1313 EK 60 SNL 516-613 2313 K	INA Bore (mm) Unit Non-split bearing block Bearing 35 PASE 35 N GG ASE 07 N GRAE 35 NPPB 40 PASE 40 N GG ASE/AK 08 N GRAE 40 NPPB SKF Bore (mm) Split bearing block Bearing Locking ring 50 SNL 513-611 ¹¹ 1311 EK FRB 11/120 60 SNL 516-613 1313 EK FRB 12.5/140 60 SNL 516-613 2313 K FRB 5/140	INA INA Bore (mm) Unit Non-split bearing block Bearing Unit 35 PASE 35 N GG ASE 07 N GRAE 35 NPPB SY 35 FM 40 PASE 40 N GG ASE/AK 08 N GRAE 40 NPPB SY 40 FM SKF Bore (mm) Split bearing block Bearing Locking ring BL 50 SNL 513-611 ¹¹ 1311 EK FRB 11/120 H 3 60 SNL 516-613 1313 EK FRB 12.5/140 H 3 60 SNL 516-613 2313 K FRB 5/140 H 2	INASKFBore (mm)UnitNon-split bearing blockBearingUnitNon-split bearing block35PASE 35 NGG ASE 07 NGRAE 35 NPPBSY 35 FMSY 507 M40PASE 40 NGG ASE/AK 08 NGRAE 40 NPPBSY 40 FMSY 508 MSkFBore (mm)Split bearing blockBearing BearingLocking ringBush50SNL 513-611 ¹¹ 1311 EKFRB 11/120H 31160SNL 516-6131313 EKFRB 12.5/140H 31360SNL 516-6132313 KFRB 5/140H 2313	$\begin{tabular}{ c c c c c c c c c c } \hline INA & SKF \\ \hline Bore (mm) & Unit & Non-split bearing block & Bearing & Bearing & Unit & Non-split bearing block & Bearing & Bearing block & Bearing & Bearing block & SY 35 FM $$Y 507 M $YET 207 \\ \hline 40 & PASE 40 N & GG ASE 07 N & GRAE 35 NPPB & SY 35 FM $$Y 507 M $YET 207 \\ \hline 40 & PASE 40 N & GG ASE/AK 08 N & GRAE 40 NPPB & SY 40 FM $$SY 508 M $YET 208 \\ \hline & SKF & Split bearing block & Bearing & Locking ring & Bush & Sealing ring \\ \hline 50 & SNL 513-611^{1)} & 1311 EK & FRB 11/120 & H 311 & TSN 611 L \\ \hline 60 & SNL 516-613 & 1313 EK & FRB 12.5/140 & H 313 & TSN 613 L \\ \hline 60 & SNL 516-613 & 2313 K & FRB 5/140 & H 2313 & TSN 613 L \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c c c c c c } \hline INA & INA$	INASKFNon-split bearing blockNon-split bearing blockBearingNon-split bearing blockNon-split 	

* Roller bearing; 1) Previous code: SE 513-611

Table 2.8 - TZAF FF B / R, VTZ B / R, NTHZ B / R, TZAF B / R

			INA			SKF	NTN		
Fan size	Bore (mm)	Unit	Rubber ring	Bearing	Unit	Rubber ring	Bearing	Unit (with rubber ring)	Bearing
315	25	RABR-B 25/62	RABR 52/62	RAE 25 NPPB	CYS 25 FM	RIS 205	YET 205	AELR205W3	AEL205W3
355, 400	30	RABR-B 30/72	RABR 62/72	RAE 30 NPPB	CYS 30 FM	RIS 206 A	YET 206	AELR206W3	AEL206W3
450, 500	35	RABR-B 35/80	RABR 72/80	RAE 35 NPPB	CYS 35 FM	RIS 207 A	YET 207	AELR207W3	AEL207W3
560, 630	40	RABR-B 40/85	RABR 80/85	RAE 40 NPPB	CYS 40 FM	RIS 208 A	YET 208	AELR208W3	AEL208W3
710	50	RABR-B 50/100	RABR 90/100	RAE 50 NPPB	CYS 50 FM	RIS 210 A	YET 210	AELR210D1W3	AEL210D1W3

			INA			SKF		NTN			
Fan size	Bore (mm)	Unit	Non-split bearing block	Bearing	Unit	Non-split bearing	Bearing	Unit	Non-split bearing	Bearing	
						block			block		
315	25	PASE 25 N	GG ASE 05 N	GRAE 25 NPPB	SY 25 FM	SY 505 M	YET 205	M-AELP205D1W3	P205D1	M-AEL205D1W3	
355, 400	30	PASE 30 N	GG ASE 06 N	GRAE 30 NPPB	SY 30 FM	SY 506 M	YET 206	M-AELP206D1W3	P206D1	M-AEL206D1W3	
450, 500	35	PASE 35 N	GG ASE 07 N	GRAE 35 NPPB	SY 35 FM	SY 507 M	YET 207	M-AELP207D1W3	P207D1	M-AEL207D1W3	
560, 630	40	PASE 40 N	GG ASE/AK 08 N	GRAE 40 NPPB	SY 40 FM	SY 508 M	YET 208	M-AELP208D1W3	P208D1	M-AEL208D1W3	
710, 800	50	PASE 50 N	GG ASE 10 N	GRAE 50 NPPB	SY 50 FM	SY 510 M	YET 210	M-AELP210D1W3	P210D1	M-AEL210D1W3	
900, 1000	60	PASE 60 N	GG ASE 12 N	GRAE 60 NPPB				M-AELP212D1W3	P212D1	M-AEL212D1W3	
1120	70	RASE 70	GG ASE 14	GE 70 KRRB							
	SKF										
Fan size	Bore (mm)	Split bear block	•	Locking ring	Bush		Sealing ring				
1250	70	SNL 516-6	613 * 22216 EK	FRB 12.5/140	H 316	6	TSN 516 L]			

Table 2.9 - TZAF FF T1, VTZ T1, NTHZ T1, TZAF T1

* Roller bearing

Table 2.10 - TZAF FF T2L, NTHZ T2L, TZAF T2L

			INA			SKF		NTN			
Fan size	Bore (mm)	Unit	Rubber ring	Bearing	Unit	Rubber ring	Bearing	Unit (with rubber ring)		Bearing	
400	35	RABR-B 35/80	RABR 72/80	RAE 35 NPPB	CYS 35 FM	RIS 207 A	YET 207	AELR207W3		AEL207W3	
450, 500	40	RABR-B 40/85	RABR 80/85	RAE 40 NPPB	CYS 40 FM	RIS 208 A	YET 208	AELR208W3		AEL208W3	
		Unit	Non-split bearing block	Bearing				Unit	Non-split bearing block	Bearing	
560, 630	50	RSAO 50	GG SAO 10	GNE 50 KRRB				UELP310D1W3	P310D1	UEL310D1W3	
710, 800, 900, 1000	60	RSAO 60	GG SAO 12	GNE 60 KRRB				UELP312D1W3	P312D1	UEL312D1W3	

			INA				SKF			NTN			
Fan size	Bore (mm)	Unit	Non-split bearing block	Bearing	Un	it	Non-spi bearing bl		Bearing	Unit	Non-split bearing block	Bearing	
315	30	PASE 30 N	GG ASE 06 N	GRAE 30 NPPB	SY 30	FM	SY 506	М	YET 206	M-AELP206D1W3	P206D1	M-AEL206D1W3	
355, 400	35	PASE 35 N	GG ASE 07 N	GRAE 35 NPPB	SY 35	FM	SY 507	М	YET 207	M-AELP207D1W3	P207D1	M-AEL207D1W3	
450, 500	40	PASE 40 N	GG ASE/AK 08 N	GRAE 40 NPPB	SY 40	FM	SY 508	М	YET 208	M-AELP208D1W3	P208D1	M-AEL208D1W3	
				5	SKF								
Fan size	Bore (mm)	Split bearin block	g Bearing	Lockii	ng ring		Bush	S	ealing ring				
560, 630	50	SNL 513-61	1 ¹⁾ 1311 EKTN	V9 FRB 1	1/120	ŀ	+ 311	Т	SN 611 G				
710, 800, 900, 1000	60	SNL 513-61	1 ¹⁾ * 22213 E	K FRB 1	0/120	ŀ	H 313	Т	'SN 513 L				
1120, 1250	75	SNL 517	* 22217 E		2.5/150		H 317		SN 517 L				

Table 2.11 - TZAF FF T2, NTHZ T2, TZAF T2

* Roller bearing; 1) Previous code: SE 513-611

Table 2.12 - MAZ T1, MHZ T1

			INA			SKF			NTN		
Fan size	Bore (mm)	Unit	Non-split bearing block	Bearing	Unit	Non-split bearing block	Bearing	Unit	Non-split bearing block	Bearing	
315	25	PASE 25 N	GG ASE 05 N	GRAE 25 NPPB	SY 25 FM	SY 505 M	YET 205	M-AELP205D1W3	P205D1	M-AEL205D1W3	
355, 400	30	PASE 30 N	GG ASE 06 N	GRAE 30 NPPB	SY 30 FM	SY 506 M	YET 206	M-AELP206D1W3	P206D1	M-AEL206D1W3	
450, 500	35	PASE 35 N	GG ASE 07 N	GRAE 35 NPPB	SY 35 FM	SY 507 M	YET 207	M-AELP207D1W3	P207D1	M-AEL207D1W3	
560, 630	40	PASE 40 N	GG ASE/AK 08 N	GRAE 40 NPPB	SY 40 FM	SY 508 M	YET 208	M-AELP208D1W3	P208D1	M-AEL208D1W3	
710, 800	50	PASE 50 N	GG ASE 10 N	GRAE 50 NPPB	SY 50 FM	SY 510 M	YET 210	M-AELP210D1W3	P210D1	M-AEL210D1W3	
900, 1000	60	PASE 60 N	GG ASE 12 N	GRAE 60 NPPB				M-AELP212D1W3	P212D1	M-AEL212D1W3	
1120	70	RASE 70	GG ASE 14	GE 70 KRRB							
				Sk	٢F						
Fan size	Bore (mm)	Split bear block	0	Locking	ring	Bush	Sealing ring				
1250	70	SNL 516-0	613 * 22216 E	K FRB 12.5	/140	H 316	TSN 516 L]			
					*						

* Roller bearing

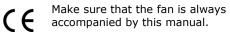
Table 2.13 - MAZ T2L, MHZ T2L

			INA			SKF		NTN			
Fan size	Bore (mm)	Unit	Non-split bearing block	Bearing	Unit	Non-split bearing block	Bearing	Unit	Non-split bearing block	Bearing	
400	35	PASE 35 N	GG ASE 07 N	GRAE 35 NPPB	SY 35 FM	SY 507 M	YET 207	M-AELP207D1W3	P207D1	M-AEL207D1W3	
450, 500	40	PASE 40 N	GG ASE/AK 08 N	GRAE 40 NPPB	SY 40 FM	SY 508 M	YET 208	M-AELP208D1W3	P208D1	M-AEL208D1W3	
560, 630	50	RSAO 50	GG SAO 10	GNE 50 KRRB				UELP310D1W3	P310D1	UEL310D1W3	
710, 800, 900, 1000	60	RSAO 60	GG SAO 12	GNE 60 KRRB				UELP312D1W3	P312D1	UEL312D1W3	

Table 2.14 - MAZ T2, MHZ T2

				SKF		
Fan size	Bore	Split bearing	Bearing	Locking ring	Bush	Sealing ring
	(mm)	block				
315	25	SNL 506-605	2206 EK	FRB 6/62	H 306	TSN 506 L
355, 400	35	SNL 510-608 ¹⁾	1308 EK	FRB 9/90	H 308	TSN 608 L
450, 500	40	SNL 511-609 ²⁾	1309 EK	FRB 9.5/100	H 309	TSN 609 L
560, 630	50	SNL 511-609 ²⁾	* 22211 EK	FRB 9.5/100	H 311	TSN 511 L
710, 800, 900, 1000	60	SNL 513-611 ³⁾	* 22213 EK	FRB 10/120	H 313	TSN 513 L
1120, 1250	75	SNL 517	* 22217 EK	FRB 12.5/150	H 317	TSN 517 L
* Roller bearing	1) Previou	is code: SE 510-608	3.2) Previous co	nde: SE 511-609	3) Previous code:	SE 513-611

Roller bearing; 1) Previous code: SE 510-608; 2) Previous code: SE 511-609; 3) Previous code: SE 513-611


Table 2.15 - NPA B, NPE B, PEAF B SETTING 11

			INA			SKF		NTN		
Fan size	Bore	Unit	Rubber ring	Bearing	Unit	Rubber ring	Bearing	Unit (with rubber	Bearing	
	(mm)							ring)		
315	25	RABR-B 25/62	RABR 52/62	RAE 25 NPPB	CYS 25 FM	RIS 205	YET 205	AELR205W3	AEL205W3	
355, 400	30	RABR-B 30/72	RABR 62/72	RAE 30 NPPB	CYS 30 FM	RIS 206 A	YET 206	AELR206W3	AEL206W3	
450, 500	35	RABR-B 35/80	RABR 72/80	RAE 35 NPPB	CYS 35 FM	RIS 207 A	YET 207	AELR207W3	AEL207W3	
560, 630	40	RABR-B 40/85	RABR 80/85	RAE 40 NPPB	CYS 40 FM	RIS 208 A	YET 208	AELR208W3	AEL208W3	
710	50	RABR-B 50/100	RABR 90/100	RAE 50 NPPB	CYS 50 FM	RIS 210 A	YET 210	AELR210D1W3	AEL210D1W3	

Table 2.16 - NPA T1, NPE T1, PEAF T1 SETTING 11

			INA			SKF		NTN				
Fan size	Bore (mm)	Unit	Non-split bearing block	Bearing	Unit	Non-split bearing block	Bearing	Unit	Non-split bearing block	Bearing		
315	25	PASE 25	GG ASE 05 N	GRAE 25 NPPB	SY 25 FM	SY 505 M	YET 205	M-AELP205D1W3	P205D1	M-AEL205D1W3		
355, 400	30	PASE 30	GG ASE 06 N	GRAE 30 NPPB	SY 30 FM	SY 506 M	YET 206	M-AELP206D1W3	P206D1	M-AEL206D1W3		
450, 500	35	PASE 35	GG ASE 07 N	GRAE 35 NPPB	SY 35 FM	SY 507 M	YET 207	M-AELP207D1W3	P207D1	M-AEL207D1W3		
560, 630	40	PASE 40	GG ASE/AK 08 N	GRAE 40 NPPB	SY 40 FM	SY 508 M	YET 208	M-AELP208D1W3	P208D1	M-AEL208D1W3		
710, 800	50	PASE 50	GG ASE 10 N	GRAE 50 NPPB	SY 50 FM	SY 510 M	YET 210	M-AELP210D1W3	P210D1	M-AEL210D1W3		
900, 1000	60	PASE 60	GG ASE 12 N	GRAE 60 NPPB				M-AELP212D1W3	P212D1	M-AEL212D1W3		

	Table 2.17 - NPA T2, PEAF T2 SETTING 11													
INLET	INLET SIDE INA					SKF		NTN						
Fan size	Bore (mm)	Unit	Non-split bearing block	Bearing	Unit	Non-split bearing block	Bearing	Unit	Non-split bearing block	Bearing				
315	25	PASE 25	GG ASE 05 N	GRAE 25 NPPB	SY 25 FM	SY 505 M	YET 205	M-AELP205D1W3	P205D1	M-AEL205D1W3				
355, 400	30	PASE 30	GG ASE 06 N	GRAE 30 NPPB	SY 30 FM	SY 506 M	YET 206	M-AELP206D1W3	P206D1	M-AEL206D1W3				
450, 500	35	PASE 35	GG ASE 07 N	GRAE 35 NPPB	SY 35 FM	SY 507 M	YET 207	M-AELP207D1W3	P207D1	M-AEL207D1W3				
560, 630	40	PASE 40	GG ASE/AK 08 N	GRAE 40 NPPB	SY 40 FM	SY 508 M	YET 208	M-AELP208D1W3	P208D1	M-AEL208D1W3				
710, 800	50	PASE 50	GG ASE 10 N	GRAE 50 NPPB	SY 50 FM	SY 510 M	YET 210	M-AELP210D1W3	P210D1	M-AEL210D1W3				

TRANSMIS	SION SIDE	SKF									
Fan size	Bore (mm)	Split bearing block	Bearing	Locking ring	Bush	Sealing ring					
315	25	SNL 506-605	2206 EKTN9	FRB 6/62	H 306	TSN 506 L					
355, 400	30	SNL 507-606 1)	2207 EK	FRB 5.5/72	H 307	TSN 507 L					
450, 500	35	SNL 508-607 ²⁾	* 22208 EK	FRB 8/80	H 308	TSN 508 L					
560, 630	40	SNL 509 3)	* 22209CCK	FRB 3.5/85	H 309	TSN 509 L					
710, 800	50	SNL 511-609 4)	* 22211 EK	FBR 9.5/100	H 311	TSN 511 L					

* Roller bearing; 1) Previous code SE 507-606; 2) Previous code SE 508-607; 3) Previous code SE 509; 4) Previous code SE 511-609

Table 2.18 - NPA T2, NPE T2, PEAF T2 SETTING 11

INLET SI	DE		INA		NTN					
Fan size	Bore (mm)	Unit	Non-split bearing block	Bearing	Unit	Non-split bearing block	Bearing			
900, 1000	60	PASE 60	GG ASE 12 N	GRAE 60 NPPB	M-AELP212D1W3	P212D1	M-AEL212D1W3			

TRANSMISSIO	N SIDE	SKF									
Fan size	Bore (mm)	Split bearing	Bearing	Locking ring	Bush	Sealing					
		block				ring					
900, 1000	60	SNL 513-611 ¹⁾	* 22213 EK	FRB 10/120	H 313	TSN 513 A					

* Roller bearing; 1) Previous code SE 513-611

HOW TO ESTABLISH THE AMOUNT OF GREASE FOR RE-LUBRICATION AND INITIAL FILLING

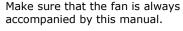

- 1) identify the fan TYPE and SIZE
- 2) in table 2 find the technical bearing specifications:
 - bore
 - split or non-split type; if split, then check whether it is ball or roller type
- 3) with fan and bearing data, enter tables from 3 to 18, where Ød corresponds to bore (internal bearing bore equal to shaft diameter where the bearing is set) to find the grease quantity for relubrication and 1st filling
 - NOTE: bearings on fans in version B or R are life-lubricated
 - Tables 9 to 12: ONLY for split block bearing on MAZ T2 and MAZ 1250 T1 and MHZ T2 and MHZ 1250 T1
 - Tables 13 to 14: ONLY for split block bearing on TEAF T2 and NTHE T2
 - Tables 15 to 18: ONLY for split block bearing on NPA, NPE and PEAF arr.11
- 4) from table 19 find type and supplier of the grease
- 5) to determine the re-lubrication time interval:
 - for non-split pillow block bearing see graph 1 with the correct parameters of shaft diameter and revolution speed
 - for split pillow block bearing with ball bearing see table 20, with roller bearing see table 21, entering the correct parameters of "bearing block" and revolution speed

					Table	- 3 - Gie	ease qu	antity fo	Ji re-iu	oncalio		n-spin p	d wome	IOCK DE	anngs	
	TH	LZ FF	T1, TL2	Z T, TLI	T, THL	Z T, TL	E T, TH	LE T, 1	EAF T1	I/ T1G, N	ITHE T1	/ T1G, 1	THE T1/	T1G,	TZAF,	TZAF
	TZAF	FFF T1	, VTZ	T1, NTH						PEAF T1	in Sist	.11; NF	PA T2, N	IPE T2	FF, NT	HZ T1
				-				spirazio	1							
Fan size		250,		315,		400,		·500, - 18-18	560	-630	710	-800	900-	1000	11	20
		- 9-9 **	10-8 -	10-10	12-9 -	15-15	10-13	- 10-10								
	М	Ød	M (g)	Ød	M (g)	Ød	M (g)	Ød	M (g)	Ød	M (g)	Ød	M (g)	Ød	M (g)	Ød
	(g)	(mm)	Wi (9)	(mm)	W (9)	(mm)	WI (9)	(mm)	W (9)	(mm)	W (9)	(mm)	W (9)	(mm)	W (9)	(mm)
	3,3	20	3,9	25	5,6	30	6,8	35	8,4	40	9,9	50	13,2	60	21,4	70
		ŀ	ILZ T,		FF T2I				2L,							
		TZAF FF T2, NTHZ T2, TZAF T2														
Fan size	3	15	355	5, 400	450,	500	560,	630		800, 1000						
	M (g)	Ød (mm)	M (g)	Ød (mm)	M (g)	Ød (mm)	M (g)	Ød (mm)	M (g)	Ød (mm)						
	5,6	30	6,8	35	8,4	40	9,9	50	13,2	60						
				TE	EAF T2I	., NTHI	E T2L									
Fan size	400 450, 500 560, 630 710, 800 900, 1000															
	M (g)	Ød (mm)	M (g)	Ød (mm)	M (g)	Ød (mm)	M (g)	Ød (mm)	M (g)	Ød (mm)						
	5,6	30	6,8	35	8,4	40	9,9	50	13,2	60						

Table 3 - Grease quantity for re-lubrication of non-split pillow block bearings **

** A general rule for defining the re-lubrication grease quantity according to the manufacturer bearing catalogue is the following: the grease quantity depends on the speed, from 20% to 80% of the initial grease quantity; re-lubrication should be carried out until fresh grease appears at the seal gap; the old grease must be allowed to flow out unhindered

*** NOTE: Fan sizes expressed in inches refer to the TLI fan series

 (ϵ)

							MAZ T	1, MHZ	T1					
Fan size	3	15	355	-400	450	-500	560	-630	710	-800	900-	1000	1120	
	M (g)	Ød (mm)	M (g)	Ød (mm)	M (g)	Ød (mm)	M (g)	Ød (mm)	M (g)	Ød (mm)	M (g)	Ød (mm)	M (g)	Ød (mm)
	3,9	25	5,6	30	6,8	35	8,4	40	9,9	50	13,2	60	21,4	70
				Ν	IAZ T2	∟, MHZ	T2L							
Fan size	:	315	355	5, 400	450	, 500	560,	630		00, 900, 100				
	M (g)) Ød (mm	M) (g)	Ød (mm)	M (g)	Ød (mm)	M (g)	Ød (mm)	M (g)	Ød (mm)				
	5,6	30	6,8	35	8,4	40	9,9	50	13,2	60				

** A general rule for defining the relubrication grease quantity according to the manufacturer bearing catalogue is the following: the grease quantity depends on the speed, from 20% to 80% of the initial grease quantity; re-lubrication should be carried out until fresh grease appears at the seal gap; the old grease must be allowed to flow out unhindered.

Table 5 - Grease quantity for re-lubrication of SKF SNL/SE type split-housing with pillow block ball bearings EXCEPT NPA, NPE, PEAF ARR. 11, MAZ, MHZ

Table 4 - Grease quantity for re-lubrication of non-split pillow block bearings **

I	Fan size	56	60	6	30	7	10	80	00	90	00	10	00
		M (g)	Ød (mm)										
		20	50	20	50	25	60	25	60	25	60	25	60

Table 6 - Grease quantity for initial filling or complete re-filling for SKF SNL/SE type split-housing with pillow block ball bearings

Fan size	56	60	6	30	7	10	80	00	90	00	10	00
	M (g)	Ød (mm)										
	180	50	180	50	280	60	280	60	280	60	280	60

Table 7 - Grease quantity for re-lubrication of SKF SNL/SE type split-housing with pillow block roller bearings EXCEPT NPA, NPE, PEAF ARR. 11, MAZ, MHZ, TEAF, NTHE

Fan size	710, 800, 900, 1000		THLZ 11 TZAF, TZAF FF	HLZ 1120, 1250		TZAF, TZAF FF, NTHZ 1120 T2, 1250 T2		
	M (g)	Ød (mm)	M (g)	Ød (mm)	M (g)	Ød (mm)	M (g)	Ød (mm)
	20	60	25	70	40	80	25	75

Operating and Maintenance Manual – Air Conditioning Division

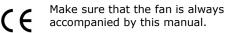


Table 8 - Grease quantity for initial filling or complete re-filling for SKF SNL/SE type split-housing with pillow block roller bearings

Fan size	710, 800, 900, 1000		THLZ 1120, 1250; TZAF 1250 T1		HLZ 1120, 1250		TZAF, TZAF FF, NTHZ 1120 T2, 1250 T2	
	M (g)	Ød (mm)	M (g)	Ød (mm)	M (g)	Ød (mm)	M (g)	Ød (mm)
	180	60	280	70	430	80	330	75

Table 9 - Grease quantity for re-lubrication of SKF SNL/SE type split-housing with pillow block ball bearings

		MAZ T2, MHZ T2								
Fan size	315		355, 400		450, 500					
	M (g)	Ød (mm)	M (g)	Ød (mm)	M (g)	Ød (mm)				
	5	25	10	35	15	40				

Table 10 - Grease quantity for initial filling or complete re-filling for SKF SNL/SE type split-housing with pillow block ball bearings

		MAZ T2, MHZ T2							
Fan size	315		355, 400		450, 500				
	M (g)	Ød (mm)	M (g)	Ød (mm)	M (g)	Ød (mm)			
	40	25	75	35	100	40			

Table 11 - Grease quantity for re-lubrication of SKF SNL/SE type split-housing with pillow block roller bearings

	MAZ T1, MHZ T1			MAZ T2, MHZ T2							
Fan size	an size 1250		560, 630		710, 800, 900, 1000		1120, 1250				
	M (g)	Ød (mm)	M (g)	Ød (mm)	M (g)	Ød (mm)	M (g)	Ød (mm)			
	25	70	15	50	20	60	25	75			

Table 12 - Grease quantity for initial filling or complete re-filling for SKF SNL/SE type split-housing with pillow block roller bearings

MAZ T1, MHZ T1				MAZ T2, MHZ T2							
Fan size	1250		560, 630		710, 800, 900, 1000		1120, 1250				
	M (g)	Ød (mm)	M (g)	Ød (mm)	M (g)	Ød (mm)	M (g)	Ød (mm)			
	280	70	100	50	180	60	330	75			

 (ϵ)

Table 13 - Grease quantity for re-lubrication of SKF SNL/SE type split-housing with pillow block roller bearings

		TEAF T2, NTHE T2						
Fan size	80	00	900, 1000					
	M (g)	Ød (mm)	M (g)	Ød (mm)				
	15	50	20	60				

Table 14 - Grease quantity for initial filling or complete re-filling for SKF SNL/SE type split-housing with pillow block roller bearings

		TEAF T2, NTHE T2						
Fan size	80	00	900, 1000					
	M (g)	Ød (mm)	M (g)	Ød (mm)				
	100	50	180	60				

Table 15 - Grease quantity for re-lubrication of SKF SNL/SE type split-housing with pillow block ball bearings

	NPA, NPE, PEAF Setting 11						
Fan size	315 355, 400						
	M (g)	Ød (mm)	M (g)	Ød (mm)			
	5	25	10	30			

Table 16 - Grease quantity for initial filling or complete re-filling for SKF SNL/SE type split-housing with pillow block ball bearings

	NPA, NPE, PEAF Setting 11						
Fan size	3	5, 400					
	M (g)	Ød (mm)	M (g)	Ød (mm)			
	40	25	50	30			

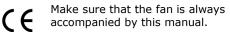


Table 17 - Grease quantity for re-lubrication of SKF SNL/SE type split-housing with pillow block roller bearings

	NPA, PEAF Setting 11						NPA, NPE, PEAF Setting 11		
Fan size	450, 500 560, 630			710	0, 800	900, 1000			
	M (g)	Ød (mm)	M (g)	Ød (mm)	M (g)	Ød (mm)	M (g)	Ød (mm)	
	10	35	10	40	15	50	20	60	

Table 18 - Grease quantity for initial filling or complete re-filling for SKF SNL/SE type split-housing with pillow block roller bearings

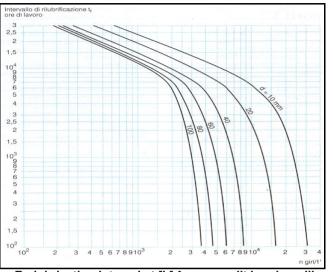

	NPA, PEAF Setting11							NPA, NPE, PEAF Setting 11		
Fan size	450, 500		560, 630		710, 800		900, 1000			
	M (g)	Ød (mm)	M (g)	Ød (mm)	M (g)	Ød (mm)	M (g)	Ød (mm)		
	60	35	65	40	100	50	180	60		

Table 19 - Suggested brands and types of grease

Supplier	Туре	Base	Temperature range (min - max)
FINA	Marson HTL 3	Lithium	-30 ℃ / +120 ℃
SHELL	Alvania Fett 3	Lithium	-20 °C / + 130 °C
ESSO	Beacon 3	Lithium	-20 ℃ / + 130 ℃
MOBIL	Mobilux EP3	Lithium	-30 ℃ / + 130 ℃

Operating and Maintenance Manual – Air Conditioning Division

Graph 1. – Re-lubrication intervals t [h] for non-split bearing pillow blocks

Table 20

		s with ball bearing

Bearing type	506	507	510	511	513	516		
Speed [min ⁻¹]	Re-lubrication intervals [hours]							
250	34700	33400	29900	28800	26500	26000		
500	24300	23300	23000	23400	23500	22500		
750	19600	18700	19700	20000	20700	19500		
1000	16800	16000	17000	17500	18300	16900		
1250	14800	14100	15000	15500	16200	14600		
1500	13300	12700	13500	13700	14300	12600		
1750	12200	11500	12000	12000	12700	10900		
2000	11200	10600	10900	11000	11200	9500		
2500	9800	9200	9000	8900	8800	7100		
3000	8700	8100	7500	7300	6900	5300		

Table 21

Re-lubrication intervals with split bearing pillow blocks with roller bearing

CE

Bearing type	508	509	511	513	516	517	518	
Speed [min ⁻¹]	Re-lubrication intervals [hours]							
250	16700	15800	14500	13000	13000	12500	12000	
500	8100	7600	6900	5500	5250	5150	5000	
750	5200	4900	4400	4000	3750	3650	3500	
1000	3800	3500	3200	3250	3000	2750	2500	
1250	2900	2700	2400	2000	1900	1800	1700	
1500	2400	2200	1900	1500	1400	1350	1300	
1750	1900	1800	1500	1100	1000	950	900	
2000	1600	1500	1300	1000	800	750	700	
2500	1200	1100	900	750	500	450		
3000	900	800	600	480	320			

Table 22 - Minimum clearance between inlet-cone and shroud in Atex execution

In Atex execution the inlet-cone is completely manufactured in copper or is provided with a copper lining at the end, fully overlapping the shroud. Besides this, the radial clearance between inletcone and shroud (dimension A in the sketch) is not as in the standard execution, but is revised to comply with the Atex standard requirements. In the table there is the nominal value of the minimum clearance value that shall be respected in Atex execution; for the relevant tolerance please contact Comefri.

VERIFY THE RESPECT OF THE DIMENSION "A"			A [mm]	
INDICATED IN THE TABLE (RELATIVE TO THE SERIES MENTIONED ABOVE) BEFORE STARTING THE FAN.	SIZE	NPL	THLZ FF, THLZ, HLZ, THLE, THE, KHLE, TE	TZAF FF, VTZ, NTHZ, MAZ, MHZ, TZAF, TEAF, NTHE, NPA
NOTE: in the TLZ, TLI and TLE fan series, the inlet-cone does not overlap the shroud	180		2	
not overlap the shroud	200		2	
TZAF FF Atex 315 – 1250 VTZ Atex 315 – 1000	225		2	
NTHZ Atex 315 – 1000 NTHZ Atex 315 – 1250	250	2	2	
THLZ FF Atex 180 – 450	280	2	2	
MAZ Atex 315 –1250 MHZ Atex 315 –1250	315	2	2	2
TZAF Atex 355 - 1250	355	2,5	2	2,5
THLZ Atex 180 – 1250 HLZ Atex 400 – 1250	400	3	3	3
THLE Atex 200 – 1000	450	4	3	4
TEAF Atex 315 – 1000 NTHE Atex 200 – 1000	500	4	4	4
THE (in steel) Atex 200 – 280	560	5	4	5
KHLE Atex 200 – 1000 NPA Atex 315 – 1250	630	5	5	5
NPL Atex 250 – 1400	710	5	5	6
TE (in steel) Atex 180 - 450	800	6	6	7
	900	7	7	7
	1000	7	7	7
	1120	7	7	8,5
	1250	8,5	7,5	9,5
	1400	9,5		10,5

Operating and Maintenance Manual – Air Conditioning Division

SUMMARY

1_FOREWORD	1
2_TECHNICAL DESCRIPTION	1
2.1 Fan description	1
2.2 Plenum Fan impeller description	1
2.3 Technical data	2
2.4 Applications	2
2.5 Fans and Plenum Fans with spark-proof execution according to ATEX 2014/34/EU.	2
2.5.1 Applications	2
2.5.2 Temperature	4
2.5.3 Spark protection measures and mechanical design criteria	5
2.5.3.1 CRITERIA FOR BOTH CATEGORY 2 AND 3 – Gas	5
2.5.3.2 FURTHER CRITERIA FOR CATEGORY 3 – Gas	6
2.5.3.3 FURTHER CRITERIA FOR CATEGORY 2 – Gas	8
2.5.4 Ignition hazard assessment	13
2.5.5 Caption of fan label for anti-spark execution	17
2.6 Fans and Plenum Fans with spark-proof execution according to Standard VDMA 24	169 17
2.6 Fans and Fierum Fans with spark-proof execution according to Standard VDMA 24	100 17
3_HANDLING AND STORAGE	
	18
3_HANDLING AND STORAGE	18 18
3_HANDLING AND STORAGE	18 18 18
3_HANDLING AND STORAGE 3.1 Receiving	18 18 18 18
3_HANDLING AND STORAGE 3.1 Receiving 3.2 Handling 3.3 Storage	18 18 18 18 18
3_HANDLING AND STORAGE 3.1 Receiving 3.2 Handling 3.3 Storage 4_INSTALLATION	18 18 18 18 18 18
3_HANDLING AND STORAGE 3.1 Receiving 3.2 Handling 3.3 Storage 4_INSTALLATION 4.1 Checks prior to installation.	18 18 18 18 18 18 18 19
3_HANDLING AND STORAGE 3.1 Receiving 3.2 Handling 3.3 Storage 4_INSTALLATION 4.1 Checks prior to installation 4.2 Installation / Fixing	18 18 18 18 18 18 19 19
3_HANDLING AND STORAGE 3.1 Receiving 3.2 Handling 3.3 Storage 4_INSTALLATION 4.1 Checks prior to installation 4.2 Installation / Fixing 4.3 Motor and Belt Drive	18 18 18 18 18 18 19 19 19
3_HANDLING AND STORAGE 3.1 Receiving	18 18 18 18 18 18 19 19 19 19
3_HANDLING AND STORAGE 3.1 Receiving 3.2 Handling 3.3 Storage 4_INSTALLATION 4.1 Checks prior to installation 4.2 Installation / Fixing 4.3 Motor and Belt Drive 4.4 Electric wiring 4.5 Spark-proof execution according to ATEX 2014/34/EU for Fans and Plenum Fans.	18 18 18 18 18 19 19 19 19 19 19 19
3_HANDLING AND STORAGE 3.1 Receiving 3.2 Handling 3.3 Storage 4_INSTALLATION 4.1 Checks prior to installation 4.2 Installation / Fixing 4.3 Motor and Belt Drive 4.4 Electric wiring 4.5 Spark-proof execution according to ATEX 2014/34/EU for Fans and Plenum Fans 5_START-UP 5.1 Safety checks 5.2 Test run	18 18 18 18 18 19 19 19 19 19 19 19 19 12 22
3_HANDLING AND STORAGE 3.1 Receiving 3.2 Handling 3.3 Storage 4_INSTALLATION 4.1 Checks prior to installation 4.2 Installation / Fixing 4.3 Motor and Belt Drive 4.4 Electric wiring 4.5 Spark-proof execution according to ATEX 2014/34/EU for Fans and Plenum Fans 5_START-UP 5.1 Safety checks 5.2 Test run 5.3 Checking current consumption	18 18 18 18 18 19 19 19 19 19 19 19 22 22
3_HANDLING AND STORAGE 3.1 Receiving 3.2 Handling 3.3 Storage 4_INSTALLATION 4.1 Checks prior to installation 4.2 Installation / Fixing 4.3 Motor and Belt Drive 4.4 Electric wiring 4.5 Spark-proof execution according to ATEX 2014/34/EU for Fans and Plenum Fans 5_START-UP 5.1 Safety checks 5.2 Test run	18 18 18 18 18 19 19 19 19 19 19 19 22 22

6_MAINTENANCE	22
6.1 Safety information	22
6.2 Casing and impeller	22
6.3 Accessories	22
6.4 Checking rotating parts	23
6.5 Belt drive	23
6.5.1 Belt tensioning	23
6.5.2 Minimum pulley diameters	23
6.5.3 Belt replacement	23
6.5.4 Taperlock pulley replacement	23
6.6 Bearings	24
6.6.1 Replacing Bearings	24
6.6.1.1 Replacing bearings on bearing-brackets	24
6.6.1.2 Replacing bearings on cast-iron pillow blocks	24
6.6.1.3 Replacing bearings mounted on SKF split cast-iron pillow block SNL/SE	25
6.7 Replacing the motor and impeller in Plenum Fans	25
6.8 Spark-proof execution according to ATEX 2014/34/EU for Fans and Plenum Fans	25
7_TRUBLESHOOTING	27
8_MANUFACTURER'S DECLARATIONS	28
9_ErP SPECIFICATIONS	29
10_SPARE PARTS	30
11_PLACING OUT OF SERVICE AND SCRAPPING	30
12_RESIDUAL RISKS	31
	32
Settings for Plenum Fans	32
Table 1 - Belt trasmission	33
Tables 2 - Types of bearings	33
Table from 3 to 18 - How to establish the amount of grease for re-lubrication and initial filling	40
Table 19 - Suggested brands and types of grease	44
Graph.1, Table 20 and 21 - Re-lubrication intervals for bearing pillow blocks	45
Table 22 – Minimum clearance between inlet-cone and shroud in Atex execution	46

Manual, in original copy, issued by Co.me.fri. S.p.A. Via Buia, 3 33010 Magnano in Riviera (UD) Italy Download available at <u>WWW.comefri.com</u>

Code C-0104 Rev. 01.20

NOTE:

This manual can be subject to variations depending on possible updates of the "Atex" standard of reference.

The following versions of this manual will also contain indications for the HLE fan series, currently excluded.

Comefri declines any responsibility for damage or inconveniences which can be sustained as direct or indirect consequences of methods, procedures and applications in contradiction or without full compliance with the instructions divided in this document.

Comefri reserves the right to modify and update this document without any obligation for prior notice.

For further information and clarifications concerning the above contents, contact Comefri S.p.A., Air Conditioning Fans Division, Magnano in Riviera (UD).