ebm-papst Mulfingen GmbH & Co. KG

Bachmühle 2 D-74673 Mulfingen Phone +49 (0) 7938 81-0 Fax +49 (0) 7938 81-110 info1@de.ebmpapst.com www.ebmpapst.com

CONTENTS

1. SAFETY REGULATIONS AND INFORMATION 1.1 Hazard levels for warnings 1.2 Staff qualifications 1.3 Basic safety rules 1.4 Voltage 1.5 Safety and protective features 1.6 Mechanical movement 1.7 Emissions 1.8 Hot surface 1.9 Transport 1.10 Storage	1 1 1 1 1 2 2 2 2 2 2 2
2. INTENDED USE	3
3. TECHNICAL DATA 3.1 Product drawing 3.2 Nominal data 3.3 Data according to Commission Regulation (EU) 327/2011 3.4 Technical description 3.5 Mounting data 3.6 Transport and storage conditions	4 4 5 5 6 6
 4. CONNECTION AND STARTUP 4.1 Mechanical connection 4.2 Electrical connection 4.3 Connection in terminal box 4.4 Connection diagram 4.5 Opening additional cable glands 4.6 Checking connections 4.7 Switching on the device 4.8 Switching off the device 	6 6 7 7 9 10 10 10
 5. MAINTENANCE, MALFUNCTIONS, POSSIBLE CAUSES AND REMEDIES 5.1 Cleaning 5.2 Safety inspection 5.3 Disposal 	10 11 11 11

1. SAFETY REGULATIONS AND INFORMATION

Read these operating instructions carefully before starting work on the device. Observe the following warnings to prevent malfunctions or danger to persons.

These operating instructions are to be regarded as part of the device. The device is only to be sold or passed on together with the operating instructions.

These operating instructions may be duplicated and distributed to inform about potential dangers and their prevention.

1.1 Hazard levels for warnings

These operating instructions use the following hazard levels to indicate potentially hazardous situations and important safety regulations:

DANGER

Indicates an imminently hazardous situation which will result in death or serious injury if the specified actions are not taken. Compliance with the instructions is imperative.

WARNING

Indicates a potentially hazardous situation which can result in death or serious injury if the specified actions are not taken. Exercise extreme caution while working.

CAUTION

Indicates a potentially hazardous situation which can result in minor or moderate injury or damage to property if the specified actions are not taken

NOTE

A potentially harmful situation can occur and, if not avoided, can lead to property damage.

1.2 Staff qualifications

The device may only be transported, unpacked, installed, operated, maintained and otherwise used by suitably qualified, trained and authorized technical staff.

Only authorized specialists are permitted to install the device, to carry out a test run and to perform work on the electrical installation.

1.3 Basic safety rules

The safety hazards associated with the device must be assessed again following installation in the final product.

The locally applicable industrial safety regulations are always to be observed when working on the device.

Keep the workplace clean and tidy. Untidiness in the work area increases the risk of accidents.

Note the following when working on the device:

⇒ Do not perform any modifications, additions or conversions on the device without the approval of ebm-papst.

1.4 Voltage

- Check the device's electrical equipment at regular intervals; see Chapter 5.2 Safety inspection.
- ⇒ Replace loose connections and defective cables immediately.

DANGER

Electrically charged device

Risk of electric shock

→ When working on an electrically charged device, stand on a rubber mat.

CAUTION

Electric charge on capacitor after device is switched off Electric shock, risk of injury

→ Discharge the capacitors before working on the device.

WARNING

Live terminals and connections even with device switched off

Electric shock

→ Wait five minutes after disconnecting the voltage at all poles before opening the device.

CALITION

In the event of a fault, the rotor and the impeller will be energized

The rotor and the impeller have basic insulation.

→ Do not touch the rotor and impeller once installed.

CAUTION

The motor restarts automatically when operating voltage is applied, e.g. after a power failure.

Risk of injury

- → Keep out of the device's danger zone.
- → When working on the device, switch off the line voltage and ensure that it cannot be switched back on.
- → Wait until the device comes to a stop.
- → Install the externally wired thermal overload protector in the control circuit so that following a malfunction the motor does not switch on again automatically after cooling off.

1.5 Safety and protective features

DANGER

Guard missing and guard not functioning

Without a guard, hands may become caught up in the device during operation for example, resulting in serious injury. Loose parts or items of clothing could be drawn in.

- → The device is a built-in component. As the owner, you are responsible for ensuring that the device is adequately safeguarded.# Operate the device only with a fixed protective device and guard grill.
- → Stop the device immediately if a protective device is found to be missing or ineffective.

WARNING

Damage to guard grill, parts flying out

The guard grill is not suitable for heavy loads. Parts lying on the guard grill or falling through the guard grill may be thrown out by the fan when in operation.

- → Never step on the guard grill or subject the guard grill to load.
- → Do not place any objects on the guard grill.
- → There must be sufficient space around the fan to be able to get past the fan.

1.6 Mechanical movement

DANGER

Rotating device

Risk of injury to body parts coming into contact with the rotor or the impeller.

- → Secure the device against accidental contact.
- → Before working on the system/machine, wait until all parts have come to a standstill.

WARNING

Rotating device

Long hair and dangling items of clothing, jewelry and the like can become entangled and be pulled into the device. Injuries can result

- → Do not wear any loose-fitting or dangling clothing or jewelry while working on rotating parts.
- → Protect long hair with a cap.

1.7 Emissions

WARNING

Depending on the installation and operating conditions, the sound pressure level may exceed 70 dB(A).

Risk of noise-induced hearing loss

- → Take appropriate technical safety measures.
- → Protect operating personnel with appropriate safety equipment such as hearing protection.
- → Also observe the requirements of local agencies.

1.8 Hot surface

CAUTION

High temperature on motor housing

Risk of burns

→ Ensure sufficient protection against accidental contact.

1.9 Transport

NOTE

Transporting the device

- → Transport the device in its original packaging only.
- → Secure the device so it cannot slip, e.g. by using a lashing strip.

1.10 Storage

- ⇒ Store the device, partially or fully assembled, in a dry place, protected against the weather and free from vibration, in the original packaging in a clean environment.
- ⇒ Protect the device against environmental effects and dirt until final installation.
- ⇒ We recommend storing the device for no longer than one year in order to guarantee trouble-free operation and the longest possible service life.
- ⇒ Even devices explicitly intended for outdoor use are to be stored as described prior to commissioning.
- Maintain the storage temperature, see Chapter 3.6 Transport and storage conditions.
- ⇒ Make sure that all cable glands are fitted with dummy plugs.

2. INTENDED USE

The device is exclusively designed as a built-in device for conveying air according to its technical data.

Any other usage above and beyond this does not conform with the intended purpose and constitutes misuse of the device.

Customer equipment must be capable of withstanding the mechanical and thermal stresses that can arise from this product. This applies for the entire service life of the equipment in which this product is installed.

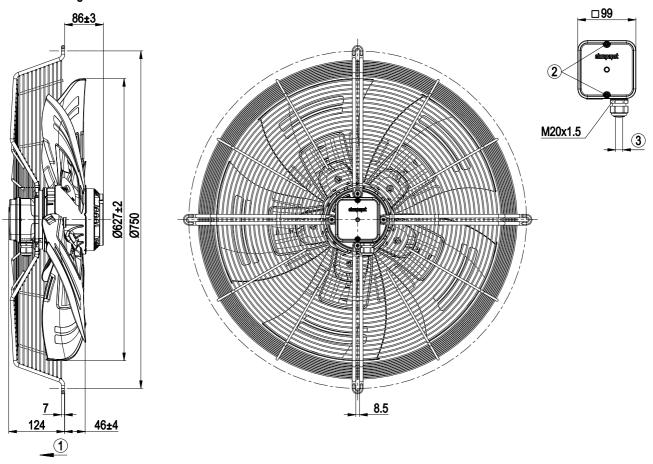
Intended use also includes

- Using the device only in stationary systems.
- Performing all maintenance work.
- Conveying air at an ambient air pressure between 800 mbar and 1050 mbar.
- Using the device within the permitted ambient temperature range; see Chapter 3.6 Transport and storage conditions and Chapter 3.2 Nominal data.
- · Operating the device with all protective devices.
- Following the operating instructions.

Improper use

In particular, operating the device in the following ways is prohibited and could be hazardous:

- Operating the device in an unbalanced state, e.g. due to dirt deposits or ice formation.
- Resonant operation, operation with severe vibration. This also includes vibration transmitted to the fan from the customer installation.
- Operation in medical equipment with a life-sustaining or life-support function.
- Conveying solids in the flow medium.
- · Painting the device
- Connections (e.g. screws) coming loose during operation.
- Opening the terminal box during operation.
- Conveying air that contains abrasive particles.
- Conveying highly corrosive air, e.g. salt spray. Exception: devices designed for salt spray and correspondingly protected.
- Conveying air with high dust content, e.g. suctioning off sawdust.
- Operating the device close to flammable materials or components.
- Operating the device in an explosive atmosphere.
- Using the device as a safety component or to perform safety-related functions
- Operation with completely or partially disassembled or manipulated protective devices.
- In addition, all applications not listed among the intended uses.



Translation of the original operating instructions

3. TECHNICAL DATA

3.1 Product drawing

All dimensions in mm.

1	Direction of air flow "V"
2	Tightening torque 1.5 ± 0.2 Nm
3	Cable diameter: min. 6 mm, max. 12 mm; tightening torque 2±0.3 Nm

3.2 Nominal data

Motor	M6E110-GF	
	T .	T .
Phase	1~	1~
Nominal voltage / VAC	230	230
Frequency / Hz	50	60
Method of obtaining data	ml	ml
Valid for approval/ standard	CE	CE
Speed (rpm) / min-1	900	920
Power consumption / W	480	690
Current draw / A	2.12	3.02
Capacitor / µF	12	12
Capacitor voltage / VDB	450	450
Max. back pressure / Pa	100	110
Min. ambient	-40	-40
temperature / °C		
Max. ambient	65	40
temperature / °C		
Starting current / A	4.6	4.1

ml = Max. load \cdot me = Max. efficiency \cdot fa = Free air cs = Customer specification \cdot ce = Customer equipment

Subject to change

3.3 Data according to Commission Regulation (EU) 327/

	Actual	Req. 2015	
01 Overall efficiency ηes / %	33.9	31.6	
02 Measurement category	Α		
03 Efficiency category	Static	Static	
04 Efficiency grade N	42.3	40	
05 Variable speed drive	No		
06 Year of manufacture	The year of manufacture is specified on the product's rating label.		
07 Manufacturer	ebm-papst Mulfingen GmbH & Co. KG Amtsgericht (court of registration) Stuttgart · HRA 590344 D-74673 Mulfingen		
08 Type	S6E630-AO01-01		
09 Power consumption Pe / kW	0.47		
09 Air flow qv / m³/h	6215		
09 Pressure increase total psf / Pa	96		
10 Speed (rpm) n / min-1	905		
11 Specific ratio*	1.00		
12 Recycling/disposal	Information on recycling and disposal is provided in the operating instructions.		
13 Maintenance	Information on installation, operation and maintenance is provided in the operating instructions.		
14 Additional components	efficiency that ar	ed to calculate the energy re not apparent from the ategory are detailed in the	

^{*} Specific ratio = 1 + pfs / 100 000 Pa

Data obtained at optimum efficiency level. The ErP data is determined using a motor-impeller combination in a standardized measurement setup.

3.4 Technical description

Weight	17.7 kg	
Size	630 mm	
Motor size	110	
Rotor surface	Cast in aluminum	
Terminal box material	PP plastic	
Blade material	Sheet aluminum insert, sprayed with PP	
	plastic	
Guard grille material	Steel, phosphated and coated with black plastic	
Number of blades	5	
Blade pitch	-10°	
Airflow direction	V	
Direction of rotation	Counterclockwise, viewed toward rotor	
Degree of protection	IP54	
Insulation class	"F"	
	i i	
Moisture (F) /	H2	
Environmental (H)		
protection class		
Ambient temperature	Occasional start-up at temperatures	
note	between -40°C and -25°C is permitted.	
	For continuous operation at ambient	
	temperatures below -25°C (such as	
	refrigeration applications), use must be	
	made of a fan design with special low-	
	temperature bearings.	
Installation position	Shaft horizontal or rotor on bottom; rotor	
	on top on request	
Condensation	On rotor side	
drainage holes		
Mode	S1	
Motor bearing	Ball bearing	
Touch current	<= 3.5 mA	
according to IEC		
60990 (measuring		
circuit Fig. 4, TN		
system)		
Electrical hookup	Terminal box; Via terminal box, capacitor	
	integrated and connected	
Motor protection	Thermal overload protector (TOP) with	
	basic insulation	
with cable	Axial	
Protection class	I (with customer connection of protective	
	earth)	
Motor capacitor	S0	
according to EN 60252-		
1 in safety protection		
class		
Conformity with	EN 60034-1 (2010); CE	
standards		
Approval	EAC; CSA C22.2 No. 100; UL 1004-1;	
	VDE	
L		

With regard to cyclic speed loads, note that the rotating parts of the device are designed for a maximum of one million load cycles. If you have special questions, consult ebm-papst for support.

⇒ Use the device in accordance with its degree of protection.

Information on surface quality

The surfaces of the products conform to the generally applicable industrial standard. The surface quality may change during the production period. This has no effect on strength, dimensional stability and dimensional accuracy.

The color pigments in the paints used perceptibly react to UV light over the course of time. This does not however in any way affect the technical properties of the products. The product is to be protected against UV radiation to prevent the formation of patches and fading. Changes in color are not a reason for complaint and are not covered by the warranty.

3.5 Mounting data

Any further mounting data required can be taken from the product drawing or Section Chapter 4.1 Mechanical connection.

Strength class of	8.8
screws	

 Secure the screws against unintentional loosening (e.g. use selflocking screws).

3.6 Transport and storage conditions

Max. permitted ambient temp. for motor (transport/ storage)	+ 80 °C
Min. permitted ambient temp. for motor (transport/ storage)	- 40 °C

4. CONNECTION AND STARTUP

4.1 Mechanical connection

CAUTION

Cutting and crushing hazard when removing fan from packaging

- → Carefully remove the device from its packaging, by the guard grille. Strictly avoid shocks.
- → Wear safety shoes and cut-resistant safety gloves.

CAUTION

Heavy load when unpacking device

Risk of physical injury, such as back injuries.

→ Two people should work together to remove the device from its packaging.

CAUTION

The blades of the impeller could be damaged.

- → Carefully set down the fan on a soft surface. Make sure the blades are not subjected to load.
- → Following installation, make sure the impeller moves easily and that the blades of the impeller are not deformed or bent and do not catch at any point.

NOTE

Damage to the device from vibration

Bearing damage, shorter service life

- → The fan must not be subjected to force or excessive vibration from sections of the installation.
- → If the fan is connected to air ducts, the connection should be isolated from vibration, e.g. using compensators or similar elements
- → Ensure stress-free attachment of the fan to the substructure.
- ⇒ Check the device for transport damage. Damaged devices are not to be installed.
- ⇒ Install the undamaged device in accordance with your application.
- ⇒ Do not perform any modifications, additions or conversions on the device. Replacing the terminal box is not permitted.

NOTE

Motor capacitor

→ The product is equipped with a motor capacitor with safety protection class P0/S0 according to EN 60252-1. Take this into consideration when fitting it to the end product on the basis of applicable regulations.

CAUTION

Possible damage to the device

If the device slips during installation, serious damage can result.

- → Ensure that the device is securely positioned at its place of installation until all fastening screws have been tightened.
- · The fan must not be strained on fastening.

4.2 Electrical connection

DANGER

Voltage on the device

Electric shock

- → Always connect a protective earth first.
- → Check the protective earth.

DANGER

Faulty insulation

Risk of fatal injury from electric shock

- → Use only cables that meet the specified installation regulations for voltage, current, insulation material, capacity, etc.
- → Route cables so that they cannot be touched by any rotating parts.

DANGER

Electrical charge (>50 μ C) between phase conductor and protective earth connection after switching off supply with multiple devices connected in parallel.

Electric shock, risk of injury

→ Ensure sufficient protection against accidental contact. Before working on the electrical hookup, short the supply and PE connections.

CAUTION

Voltage

The fan is a built-in component and has no disconnecting switch.

- → Only connect the fan to circuits that can be switched off with an all-pole disconnection switch.
- → When working on the fan, secure the system/machine in which the fan is installed so as to prevent it from being switched back on.

NOTE

Water ingress into wires or cables

Water ingress at the customer end of the cable can damage the device.

→ Make sure the end of the cable is connected in a dry environment.

Only connect the device to circuits that can be switched off with an all-pole disconnection switch.

4.2.1 Requirements

- Check whether the information on the nameplate matches the connection data.
- ⇒ If the motor run capacitor was not installed by ebm-papst, check whether the information on the motor run capacitor matches the information on the nameplate.
- ⇒ Before connecting the device, make sure the power supply matches the device voltage.
- Only use cables designed for the current level indicated on the nameplate.

For determining the cross-section, note the sizing criteria according to EN 61800-5-1. The protective earth must have a cross-section equal to or greater than that of the phase conductor.

We recommend the use of 105 °C cables. Ensure that the minimum cable cross-section is at least AWG $26 / 0.13 \ \text{mm}^2$.

4.2.2 Residual current circuit breaker (RCCB)

If the use of a residual current device (RCD) is required in your installation, only pulse-current sensitive and/or AC/DC-sensitive residual current devices (type A or B) are permissible. As with variable frequency drives, residual current devices cannot provide personal safety while operating the device

4.2.3 Voltage control

NOTE

Current overshoots may occur if speed control is implemented by transformers or electronic voltage regulators (e.g. phase control). Depending on the type of installation of the device, noise and vibration may also occur in the case of phase control. Vibration can lead to bearing damage and thus premature failure.

Heating-up of the motor when using voltage control must be checked by the customer following installation in the end device.

4.2.4 Variable frequency drive

Please use a variable frequency drive only after consultation with ebmpapst.

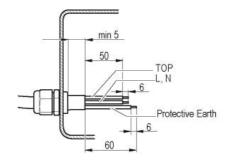
For operation with variable frequency drives, install sinusoidal filters that work on all poles (phase-phase and phase-ground) between the drive and the motor.

During operation with variable frequency drives, an all-pole sine filter protects the motor against high-voltage transients that can destroy the coil insulation system, and against harmful bearing currents.

Heating-up of the motor when using a variable frequency drive must be checked by the customer following installation in the end device.

4.3 Connection in terminal box

4.3.1 Preparing cables for connection


Only strip the cable as far as necessary, ensuring that the cable gland is sealed and there is no strain on the connections. For tightening torques, see Chapter 3.1 Product drawing.

NOTE

Tightness and strain relief are dependent on the cable

→ This must be checked by the user.

4.3.2 Connecting wires to terminals

⇒ Remove the cap from the cable gland.

Only remove caps where cables are fed in.

- Route the wire(s) (not included in scope of delivery) into the terminal box
- ⇒ First connect the "PE" (protective earth).
- ⇒ Connect the wires to the corresponding terminals.
- Connect the thermal overload protector (TOP).

Use a screwdriver to do so.

When connecting, ensure that no wire ends fan out. The terminal strip is equipped with a penetration guard.

- ⇒ Insert the leads until they meet resistance.
- ⇒ Seal the terminal box.

4.3.3 Cable routing

Water must be prevented from reaching the cable gland along the cable.

NOTE

Damage caused by moisture penetration.

Moisture can penetrate into the terminal box if water is constantly present at the cable glands.

- → To prevent the constant accumulation of water at the cable glands, the cable should be routed in a U-shaped loop wherever possible.
- → If this is not possible, a drip edge can be produced by fitting a cable tie directly in front of the cable gland for example.

Fans installed lying flat

Make sure the cable is routed in a U-shaped loop.

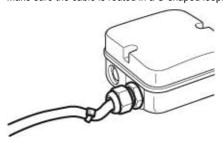


Fig. 2: Fan installed lying flat, cable routed in a U-shaped loop.

Fans installed upright

When routing the cable, make sure that the cable glands are located at the bottom. The cables must always be routed downward.

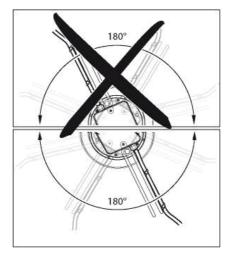


Fig. 3: Cable routing for fans installed upright.

4.3.4 Motor protection

CAUTION

Voltage

The device is a built-in component and has no disconnecting switch.

- → Connect the device to a suitable tripping unit.
- → Only connect the device to circuits that can be switched off with an all-pole disconnection switch.
- → When working on the device, secure the system/ machine in which the device is installed so as to prevent it from being switched back on.

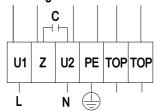
NOTE

Lack of motor protection

Without motor protection, the motor can overheat and suffer damage.

→ Connect the thermal overload protector installed in the winding.

The motors are equipped with thermal overload protectors to protect the devices.


Check to make sure that the thermal overload protector is correctly connected before each operation.

Failure to connect the thermal overload protector correctly will invalidate your warranty claim.

4.4 Connection diagram

L	= U1 = blue
Z	brown
N	= U2 = black
PE	green/yellow
TOP	gray

4.5 Opening additional cable glands

A second cable gland opening can be made in the terminal box.

WARNING

In the event of a fault, the cable gland is energized Electric shock

- → Do not use metal cable glands with plastic terminal boxes.
- Screw the cable gland into the precut thread using a wrench. When doing so, take note of the tightening torques; see Chapter 3.1 Product drawing.
- Remove the plastic tab that fell off inside the terminal box when it was penetrated.

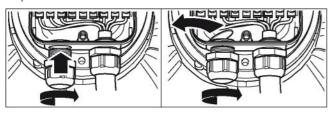


Fig. 4: Cable gland opening

NOTE

Tightness and strain relief are dependent on the cable

→ This must be checked by the user.

4.6 Checking connections

- ⇒ Ensure isolation from supply (all phases).
- ⇒ Make sure a restart is impossible
- ⇒ Check the cables for proper fit.
- Screw the terminal box cover back on again. Terminal box tightening torque, see Chapter 3.1 Product drawing.
- Make sure the terminal box is completely closed and sealed and that all screws and cable glands have been properly tightened.

4.7 Switching on the device

The device may only be switched on if it has been installed properly and in accordance with its intended use, including the required safety mechanisms and professional electrical hookup. This also applies for devices which have already been equipped with plugs and terminals or similar connectors by the customer.

WARNING

Hot motor housing

Risk of fire

- → Ensure that no combustible or flammable materials are located close to the fan.
- Before switching on, check the device for visible external damage and make sure the protective devices are functional.
- Check the fan's air flow paths for foreign matter and remove any foreign matter found.
- ⇒ Apply the nominal supply voltage.

NOTE

Damage to the device from vibration

Bearing damage, shorter service life

- \rightarrow Low-vibration operation of the fan must be ensured over the entire speed control range.
- → Severe vibration can arise for instance from inexpert handling, transportation damage and resultant imbalance or be caused by component or structural resonance.
- Speed ranges with excessively high vibration levels and possibly resonant frequencies must be determined in the course of fan commissioning.
- → Either run through the resonant range as quickly as possible with speed control or find another remedy.
- → Operation with excessively high vibration levels can lead to premature failure.

4.8 Switching off the device

- Disconnect the device from the power supply at the supply line's main switch
- ⇒ When disconnecting, be sure to disconnect the ground connection last.

5. MAINTENANCE, MALFUNCTIONS, POSSIBLE CAUSES AND REMEDIES

Do not perform any repairs on your device. Send the device to ebmpapst for repair or replacement.

WARNING

Live terminals and connections even with device switched off

Electric shock

→ Wait five minutes after disconnecting the voltage at all poles before opening the device.

CAUTION

Electric charge on capacitor after device is switched off Electric shock, risk of injury

 $\ensuremath{\rightarrow}$ Discharge the capacitors before working on the device.

CAUTION

The motor restarts automatically when operating voltage is applied, e.g. after a power failure.

Risk of injury

- → Keep out of the device's danger zone.
- → When working on the device, switch off the line voltage and ensure that it cannot be switched back on.
- → Wait until the device comes to a stop.
- → Install the externally wired thermal overload protector in the control circuit so that following a malfunction the motor does not switch on again automatically after cooling off.

NOTE

If the device is not operated for a lengthy period in installed condition in a dry environment, it is to be started up and operated at full speed for one hour at least every four months. If the device is not operated for a lengthy period in installed condition in a damp environment (e.g. outdoors), it is to be started up and operated at full speed for at least two hours once a month to move the bearings and allow any condensate that may have ingressed to evaporate.

Malfunction/fault	Possible cause	Possible remedy
Impeller not running smoothly	Imbalance in rotating parts	Clean the device; replace it if imbalance persists after cleaning. Make sure no weight clips are removed during cleaning.
Motor not turning	Mechanical blockage	Switch off, isolate from supply and remove mechanical blockage.
	Line voltage faulty	Check line voltage, restore power supply.
	Faulty connection	Isolate from supply, correct connection; see connection diagram.
	Thermal overload protector activated	Allow motor to cool off, locate and rectify cause of error, release restart lockout if necessary
	Impermissible point of operation	Check point of operation
Motor overtemperature	Ambient temperature too high	Reduce ambient temperature if possible
	Deficient cooling	Improve cooling

In the event of further malfunctions, contact ebm-papst.

5.1 Cleaning

To ensure a long service life, check the fans regularly for proper operation and soiling. The frequency of checking is to be adapted accordingly depending on the degree of soiling.

DANGER

Risk of injury from rotating fan.

- → Only clean when not in motion. Interrupt the power supply, secure against renewed switch-on. Secure against start-up, prevent air flow.
- ⇒ Dirt deposits on the motor housing can cause overheating of the motor.
- Soiling of the impeller can cause vibration that will shorten the service life of the fan.
- ⇒ Severe vibration can destroy the fan.
- ⇒ In such cases, switch off the fan immediately and clean it.
- ⇒ The preferred method of cleaning is dry cleaning, e.g. using compressed air.
- ⇒ Do not use aggressive cleaning agents!

NOTE

Damage to the device during cleaning

Malfunction possible

- → Do not clean the device using a water jet or high-pressure cleaner.
- → Do not use any acid, alkali or solvent-basedcleaning agents.
- ightarrow Do not use any pointed or sharp-edged objects for cleaning
- Completely remove any cleaning agents used.

- ⇒ If severe corrosion is visible on load-bearing or rotating parts, switch off the device immediately and replace it.
- ⇒ Repair of load-bearing or rotating parts is not permitted!
- Operate the fan for 2 hours at maximum speed so that any water that has ingressed can evaporate.
- ⇒ If cleaning does not eliminate vibrations, the fan may need to be rebalanced. To have it rebalanced, contact ebm-papst.
- The fan is equipped with maintenance-free ball bearings. The lifetime lubrication of the ball bearings is designed for a service life of 40,000 hours.
- If bearing replacement is necessary after that period, contact ebmpapst.
- ⇒ Adapt the maintenance intervals to the actual level of dust exposure.

5.2 Safety inspection

What to check	How to check	How often	What action?
Contact protection cover for	Visual inspection	At least every 6 months	Repair or replacement of device
intactness or damage			
Device for damage to blades and housing	Visual inspection	At least every 6 months	Replacement of device
Fastening the cables	Visual inspection	At least every 6 months	Fasten
Fastening the protective earth terminal	Visual inspection	At least every 6 months	Fasten
Insulation of cables for damage	Visual inspection	At least every 6 months	Replace cables
Tightness of cable gland	Visual inspection	At least every 6 months	Retighten, replace if damaged
Condensation drainage holes for clogging, where necessary	Visual inspection	At least every 6 months	Open holes
Welds for crack formation	Visual inspection	At least every 6 months	Replace device
Abnormal bearing noise	acoustic	At least every 6 months	Replace device

5.3 Disposal

For ebm-papst, environmental protection and resource preservation are top priority corporate goals.

ebm-papst operates an environmental management system which is certified in accordance with ISO 14001 and rigorously implemented around the world on the basis of German standards.

Right from the development stage, ecological design, technical safety and health protection are fixed criteria.

The following section contains recommendations for ecological disposal of the product and its components.

5.3.1 Country-specific legal requirements

NOTE

Country-specific legal requirements

Always observe the applicable country-specific legal regulations with regard to the disposal of products or waste occurring in the various phases of the life cycle. The corresponding disposal standards are also to be heeded.

5.3.2 Disassembly

Disassembly of the product must be performed or supervised by qualified personnel with the appropriate technical knowledge. The product is to be disassembled into suitable components for disposal employing standard procedures for motors.

WARNING

Heavy parts of the product may drop off. Some of the product components are heavy. These components could drop off during disassembly.

This can result in fatal or serious injury and material damage.

→ Secure components before unfastening to stop them falling.

5.3.3 Component disposal

The products are mostly made of steel, copper, aluminum and plastic. Metallic materials are generally considered to be fully recyclable. Separate the components for recycling into the following categories:

- Steel and iron
- Aluminum
- · Non-ferrous metal, e.g. motor windings
- Plastics, particularly with brominated flame retardants, in accordance with marking
- Insulating materials
- Cables and wires
- Electronic scrap, e.g. circuit boards

Only ferrite magnets and not rare earth magnets are used in external rotor motors from ebm-papst Mulfingen GmbH & Co. KG.

Ferrite magnets can be disposed of in the same way as normal iron and steel.

Electrical insulating materials on the product, in cables and wires are made of similar materials and are therefore to be treated in the same manner

The materials concerned are as follows:

- · Miscellaneous insulators used in the terminal box
- Power cables
- Cables for internal wiring
- Electrolytic capacitors

Dispose of electronic components employing the proper procedures for electronic scrap.

→ Please contact ebm-papst for any other questions on disposal.

